Home > Publications database > Polyakov blocks for the 1D conformal field theory mixed-correlator bootstrap > print |
001 | 611508 | ||
005 | 20250715170838.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.109.L061703 |2 doi |
024 | 7 | _ | |a Ghosh:2023wjn |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2772718 |2 inspire |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0037 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a arXiv:2307.01257 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2024-04945 |2 datacite_doi |
024 | 7 | _ | |a altmetric:151046960 |2 altmetric |
024 | 7 | _ | |a WOS:001195573300004 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4393308010 |
037 | _ | _ | |a PUBDB-2024-04945 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2307.01257 |2 arXiv |
100 | 1 | _ | |a Ghosh, Kausik |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Polyakov blocks for the 1D conformal field theory mixed-correlator bootstrap |
260 | _ | _ | |a Ridge, NY |c 2024 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725363868_1697608 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Phys.Rev.D 109 (2024) 6, L061703. 6+7 pages, 4 figures, Fig. 1 modified for clarity, minor corrections, further explanations, and references added |
520 | _ | _ | |a We introduce manifestly crossing-symmetric expansions for arbitrary systems of 1D CFT correlators. These expansions are given in terms of certain Polyakov blocks which we define and show how to compute efficiently. Equality of operator product expansion and Polyakov block expansions leads to sets of sum rules that any mixed correlator system must satisfy. The sum rules are diagonalized by correlators in tensor product theories of generalized free fields. We show that it is possible to do a change of a basis that diagonalizes instead mixed correlator systems involving elementary and composite operators in a single field theory. As an application, we find the first nontrivial examples of optimal bounds, saturated by the mixed correlator system ϕ,ϕ2 in the theory of a single generalized free field. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390833306 - EXC 2121: Quantum Universe (390833306) |0 G:(GEPRIS)390833306 |c 390833306 |x 1 |
536 | _ | _ | |a FUNBOOTS - Solving Conformal Field Theories with the Functional Bootstrap (101043588) |0 G:(EU-Grant)101043588 |c 101043588 |f ERC-2021-COG |x 2 |
542 | _ | _ | |i 2024-03-29 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a field theory: conformal |2 INSPIRE |
650 | _ | 7 | |a operator: composite |2 INSPIRE |
650 | _ | 7 | |a correlation function |2 INSPIRE |
650 | _ | 7 | |a sum rule |2 INSPIRE |
650 | _ | 7 | |a bootstrap |2 INSPIRE |
650 | _ | 7 | |a operator product expansion |2 INSPIRE |
650 | _ | 7 | |a dimension: 1 |2 INSPIRE |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Kaviraj, Apratim |0 P:(DE-H253)PIP1094539 |b 1 |u desy |
700 | 1 | _ | |a Paulos, Miguel F. |b 2 |
773 | 1 | 8 | |a 10.1103/physrevd.109.l061703 |b American Physical Society (APS) |d 2024-03-29 |n 6 |p L061703 |3 journal-article |2 Crossref |t Physical Review D |v 109 |y 2024 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.109.L061703 |g Vol. 109, no. 6, p. L061703 |0 PERI:(DE-600)2844732-3 |n 6 |p L061703 |t Physical review / D |v 109 |y 2024 |x 2470-0010 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:611508 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1094539 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2024-02-05 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-02-05 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-02-05 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
915 | _ | _ | |a No Peer Review |0 StatID:(DE-HGF)0020 |2 StatID |b ASC |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV D : 2022 |d 2024-12-10 |
920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)T-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1007/JHEP07(2013)055 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP03(2014)100 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP02(2022)134 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.128.021603 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP11(2022)018 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP12(2021)094 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP11(2017)133 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP11(2019)076 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP10(2022)038 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP08(2022)186 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP02(2019)162 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP02(2019)163 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.105043 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP12(2017)119 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP09(2020)006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP10(2021)116 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.025022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s10955-014-1042-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP11(2014)109 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 A. M. Polyakov |y 1974 |2 Crossref |o A. M. Polyakov 1974 |
999 | C | 5 | |a 10.1103/PhysRevLett.118.081601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP12(2018)040 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.126.211602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0550-3213(99)00526-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysb.2003.11.016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP05(2019)006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP05(2017)027 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 G. Mack |y 2009 |2 Crossref |o G. Mack 2009 |
999 | C | 5 | |a 10.1007/JHEP04(2017)146 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP03(2011)025 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP07(2020)170 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP01(2024)049 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|