001     611508
005     20250715170838.0
024 7 _ |a 10.1103/PhysRevD.109.L061703
|2 doi
024 7 _ |a Ghosh:2023wjn
|2 INSPIRETeX
024 7 _ |a inspire:2772718
|2 inspire
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:2307.01257
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2024-04945
|2 datacite_doi
024 7 _ |a altmetric:151046960
|2 altmetric
024 7 _ |a WOS:001195573300004
|2 WOS
024 7 _ |2 openalex
|a openalex:W4393308010
037 _ _ |a PUBDB-2024-04945
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2307.01257
|2 arXiv
100 1 _ |a Ghosh, Kausik
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Polyakov blocks for the 1D conformal field theory mixed-correlator bootstrap
260 _ _ |a Ridge, NY
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725363868_1697608
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Phys.Rev.D 109 (2024) 6, L061703. 6+7 pages, 4 figures, Fig. 1 modified for clarity, minor corrections, further explanations, and references added
520 _ _ |a We introduce manifestly crossing-symmetric expansions for arbitrary systems of 1D CFT correlators. These expansions are given in terms of certain Polyakov blocks which we define and show how to compute efficiently. Equality of operator product expansion and Polyakov block expansions leads to sets of sum rules that any mixed correlator system must satisfy. The sum rules are diagonalized by correlators in tensor product theories of generalized free fields. We show that it is possible to do a change of a basis that diagonalizes instead mixed correlator systems involving elementary and composite operators in a single field theory. As an application, we find the first nontrivial examples of optimal bounds, saturated by the mixed correlator system ϕ,ϕ2 in the theory of a single generalized free field.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project 390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
536 _ _ |a FUNBOOTS - Solving Conformal Field Theories with the Functional Bootstrap (101043588)
|0 G:(EU-Grant)101043588
|c 101043588
|f ERC-2021-COG
|x 2
542 _ _ |i 2024-03-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a field theory: conformal
|2 INSPIRE
650 _ 7 |a operator: composite
|2 INSPIRE
650 _ 7 |a correlation function
|2 INSPIRE
650 _ 7 |a sum rule
|2 INSPIRE
650 _ 7 |a bootstrap
|2 INSPIRE
650 _ 7 |a operator product expansion
|2 INSPIRE
650 _ 7 |a dimension: 1
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Kaviraj, Apratim
|0 P:(DE-H253)PIP1094539
|b 1
|u desy
700 1 _ |a Paulos, Miguel F.
|b 2
773 1 8 |a 10.1103/physrevd.109.l061703
|b American Physical Society (APS)
|d 2024-03-29
|n 6
|p L061703
|3 journal-article
|2 Crossref
|t Physical Review D
|v 109
|y 2024
|x 2470-0010
773 _ _ |a 10.1103/PhysRevD.109.L061703
|g Vol. 109, no. 6, p. L061703
|0 PERI:(DE-600)2844732-3
|n 6
|p L061703
|t Physical review / D
|v 109
|y 2024
|x 2470-0010
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:611508
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1094539
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-02-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-02-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-02-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1007/JHEP07(2013)055
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP03(2014)100
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP02(2022)134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.128.021603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP11(2022)018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP12(2021)094
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP11(2017)133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP11(2019)076
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP10(2022)038
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP08(2022)186
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP02(2019)162
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP02(2019)163
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.86.105043
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP12(2017)119
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP09(2020)006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP10(2021)116
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.86.025022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10955-014-1042-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP11(2014)109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. M. Polyakov
|y 1974
|2 Crossref
|o A. M. Polyakov 1974
999 C 5 |a 10.1103/PhysRevLett.118.081601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP12(2018)040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.126.211602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0550-3213(99)00526-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nuclphysb.2003.11.016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP05(2019)006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP05(2017)027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Mack
|y 2009
|2 Crossref
|o G. Mack 2009
999 C 5 |a 10.1007/JHEP04(2017)146
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP03(2011)025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP07(2020)170
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP01(2024)049
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21