000611508 001__ 611508
000611508 005__ 20250715170838.0
000611508 0247_ $$2doi$$a10.1103/PhysRevD.109.L061703
000611508 0247_ $$2INSPIRETeX$$aGhosh:2023wjn
000611508 0247_ $$2inspire$$ainspire:2772718
000611508 0247_ $$2ISSN$$a2470-0010
000611508 0247_ $$2ISSN$$a2470-0037
000611508 0247_ $$2ISSN$$a2470-0029
000611508 0247_ $$2arXiv$$aarXiv:2307.01257
000611508 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04945
000611508 0247_ $$2altmetric$$aaltmetric:151046960
000611508 0247_ $$2WOS$$aWOS:001195573300004
000611508 0247_ $$2openalex$$aopenalex:W4393308010
000611508 037__ $$aPUBDB-2024-04945
000611508 041__ $$aEnglish
000611508 082__ $$a530
000611508 088__ $$2arXiv$$aarXiv:2307.01257
000611508 1001_ $$0P:(DE-HGF)0$$aGhosh, Kausik$$b0$$eCorresponding author
000611508 245__ $$aPolyakov blocks for the 1D conformal field theory mixed-correlator bootstrap
000611508 260__ $$aRidge, NY$$bAmerican Physical Society$$c2024
000611508 3367_ $$2DRIVER$$aarticle
000611508 3367_ $$2DataCite$$aOutput Types/Journal article
000611508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725363868_1697608
000611508 3367_ $$2BibTeX$$aARTICLE
000611508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000611508 3367_ $$00$$2EndNote$$aJournal Article
000611508 500__ $$aPhys.Rev.D 109 (2024) 6, L061703. 6+7 pages, 4 figures, Fig. 1 modified for clarity, minor corrections, further explanations, and references added
000611508 520__ $$aWe introduce manifestly crossing-symmetric expansions for arbitrary systems of 1D CFT correlators. These expansions are given in terms of certain Polyakov blocks which we define and show how to compute efficiently. Equality of operator product expansion and Polyakov block expansions leads to sets of sum rules that any mixed correlator system must satisfy. The sum rules are diagonalized by correlators in tensor product theories of generalized free fields. We show that it is possible to do a change of a basis that diagonalizes instead mixed correlator systems involving elementary and composite operators in a single field theory. As an application, we find the first nontrivial examples of optimal bounds, saturated by the mixed correlator system ϕ,ϕ2 in the theory of a single generalized free field.
000611508 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000611508 536__ $$0G:(GEPRIS)390833306$$aDFG project 390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1
000611508 536__ $$0G:(EU-Grant)101043588$$aFUNBOOTS - Solving Conformal Field Theories with the Functional Bootstrap (101043588)$$c101043588$$fERC-2021-COG$$x2
000611508 542__ $$2Crossref$$i2024-03-29$$uhttps://creativecommons.org/licenses/by/4.0/
000611508 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000611508 650_7 $$2INSPIRE$$afield theory: conformal
000611508 650_7 $$2INSPIRE$$aoperator: composite
000611508 650_7 $$2INSPIRE$$acorrelation function
000611508 650_7 $$2INSPIRE$$asum rule
000611508 650_7 $$2INSPIRE$$abootstrap
000611508 650_7 $$2INSPIRE$$aoperator product expansion
000611508 650_7 $$2INSPIRE$$adimension: 1
000611508 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000611508 7001_ $$0P:(DE-H253)PIP1094539$$aKaviraj, Apratim$$b1$$udesy
000611508 7001_ $$aPaulos, Miguel F.$$b2
000611508 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.109.l061703$$bAmerican Physical Society (APS)$$d2024-03-29$$n6$$pL061703$$tPhysical Review D$$v109$$x2470-0010$$y2024
000611508 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.109.L061703$$gVol. 109, no. 6, p. L061703$$n6$$pL061703$$tPhysical review / D$$v109$$x2470-0010$$y2024
000611508 8564_ $$uhttps://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf$$yOpenAccess
000611508 8564_ $$uhttps://bib-pubdb1.desy.de/record/611508/files/PhysRevD.109.L061703.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000611508 909CO $$ooai:bib-pubdb1.desy.de:611508$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000611508 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094539$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000611508 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000611508 9141_ $$y2024
000611508 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-02-05
000611508 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-02-05
000611508 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000611508 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-02-05
000611508 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000611508 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000611508 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-02-05
000611508 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2022$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000611508 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV D : 2022$$d2024-12-10
000611508 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000611508 980__ $$ajournal
000611508 980__ $$aVDB
000611508 980__ $$aUNRESTRICTED
000611508 980__ $$aI:(DE-H253)T-20120731
000611508 9801_ $$aFullTexts
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2013)055
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2014)100
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2022)134
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.021603
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2022)018
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2021)094
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2017)133
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2019)076
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2022)038
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2022)186
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2019)162
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2019)163
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.105043
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2017)119
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2020)006
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2021)116
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.025022
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10955-014-1042-7
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2014)109
000611508 999C5 $$1A. M. Polyakov$$2Crossref$$oA. M. Polyakov 1974$$y1974
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.081601
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP12(2018)040
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.211602
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(99)00526-X
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2003.11.016
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2019)006
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2017)027
000611508 999C5 $$1G. Mack$$2Crossref$$oG. Mack 2009$$y2009
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2017)146
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2011)025
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2020)170
000611508 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP01(2024)049