000611504 001__ 611504
000611504 005__ 20250723171910.0
000611504 0247_ $$2doi$$a10.1002/adfm.202315850
000611504 0247_ $$2ISSN$$a1616-301X
000611504 0247_ $$2ISSN$$a1057-9257
000611504 0247_ $$2ISSN$$a1099-0712
000611504 0247_ $$2ISSN$$a1616-3028
000611504 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04941
000611504 0247_ $$2altmetric$$aaltmetric:165048987
000611504 0247_ $$2WOS$$aWOS:001260594300001
000611504 0247_ $$2openalex$$aopenalex:W4400247384
000611504 037__ $$aPUBDB-2024-04941
000611504 041__ $$aEnglish
000611504 082__ $$a530
000611504 1001_ $$0P:(DE-HGF)0$$aDacha, Preetam$$b0
000611504 245__ $$aEco‐Friendly Approach to Ultra‐Thin Metal Oxides‐ Solution Sheared Aluminum Oxide for Half‐Volt Operation of Organic Field‐Effect Transistors
000611504 260__ $$aWeinheim$$bWiley-VCH$$c2024
000611504 3367_ $$2DRIVER$$aarticle
000611504 3367_ $$2DataCite$$aOutput Types/Journal article
000611504 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728891981_4028549
000611504 3367_ $$2BibTeX$$aARTICLE
000611504 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000611504 3367_ $$00$$2EndNote$$aJournal Article
000611504 520__ $$aSol–gel-based solution-processed metal oxides have emerged as a key fabrication method for applications in thin film transistors both as a semiconducting and a dielectric layer. Here, a low-temperature, green solvent-based, non-toxic, and cost-effective solution shearing approach for the fabrication of thin aluminum oxide (AlOx) dielectrics is reported. Optimization of sustainability aspects like energy demand, and selection of chemicals used allows to reduce the environmental impact of the life cycle of the resulting product already in the design phase. Using this approach, ultra-thin, device-grade AlOx films of 7 nm are coated—the thinnest films to be reported for any solution-fabrication method. The metal oxide formation is achieved by both thermal annealing and deep ultra-violet (UV) light exposure techniques, resulting in capacitances of 750 and 600 nF cm−2, respectively. The structural analysis using microscopy and x-ray spectroscopy techniques confirmed the formation of smooth, ultra-thin AlOx films. These thin films are employed in organic field-effect transistors (OFETs) resulting in stable, low hysteresis devices leading to high mobilities (6.1 ± 0.9 cm2 V−1 s−1), near zero threshold voltage (−0.14 ± 0.07 V) and a low subthreshold swing (96 ± 16 mV dec−1), enabling device operation at only ±0.5 V with a good Ion/Ioff ratio (3.7 × 105). 
000611504 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000611504 536__ $$0G:(DE-H253)I-20230095$$aFS-Proposal: I-20230095 (I-20230095)$$cI-20230095$$x1
000611504 536__ $$0G:(EU-Grant)714067$$aENERGYMAPS - Revealing the electronic energy landscape of multi-layered (opto)electronic devices (714067)$$c714067$$fERC-2016-STG$$x2
000611504 542__ $$2Crossref$$i2024-07-02$$uhttp://creativecommons.org/licenses/by/4.0/
000611504 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000611504 693__ $$0EXP:(DE-H253)P-P08-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P08-20150101$$aPETRA III$$fPETRA Beamline P08$$x0
000611504 7001_ $$0P:(DE-H253)PIP1098438$$aHaase, Katherina$$b1
000611504 7001_ $$0P:(DE-HGF)0$$aWrzesińska-Lashkova, Angelika$$b2
000611504 7001_ $$0P:(DE-HGF)0$$aPohl, Darius$$b3
000611504 7001_ $$0P:(DE-HGF)0$$aMaletz, Roman$$b4
000611504 7001_ $$0P:(DE-HGF)0$$aMillek, Vojtech$$b5
000611504 7001_ $$0P:(DE-HGF)0$$aTahn, Alexander$$b6
000611504 7001_ $$0P:(DE-HGF)0$$aRellinghaus, Bernd$$b7
000611504 7001_ $$0P:(DE-HGF)0$$aDornack, Christina$$b8
000611504 7001_ $$0P:(DE-HGF)0$$aVaynzof, Yana$$b9
000611504 7001_ $$0P:(DE-H253)PIP1081764$$aHambsch, Mike$$b10
000611504 7001_ $$0P:(DE-H253)PIP1029114$$aMannsfeld, Stefan$$b11$$eCorresponding author
000611504 77318 $$2Crossref$$3journal-article$$a10.1002/adfm.202315850$$bWiley$$d2024-07-02$$n41$$tAdvanced Functional Materials$$v34$$x1616-301X$$y2024
000611504 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202315850$$gp. 2315850$$n41$$p2315850$$tAdvanced functional materials$$v34$$x1616-301X$$y2024
000611504 8564_ $$uhttps://bib-pubdb1.desy.de/record/611504/files/Adv%20Funct%20Materials%20-%202024%20-%20Dacha%20-%20Eco%E2%80%90Friendly%20Approach%20to%20Ultra%E2%80%90Thin%20Metal%20Oxides%E2%80%90%20Solution%20Sheared%20Aluminum%20Oxide%20for.pdf$$yOpenAccess
000611504 8564_ $$uhttps://bib-pubdb1.desy.de/record/611504/files/Adv%20Funct%20Materials%20-%202024%20-%20Dacha%20-%20Eco%E2%80%90Friendly%20Approach%20to%20Ultra%E2%80%90Thin%20Metal%20Oxides%E2%80%90%20Solution%20Sheared%20Aluminum%20Oxide%20for.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000611504 909CO $$ooai:bib-pubdb1.desy.de:611504$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000611504 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098438$$aExternal Institute$$b1$$kExtern
000611504 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081764$$aExternal Institute$$b10$$kExtern
000611504 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029114$$aExternal Institute$$b11$$kExtern
000611504 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000611504 9141_ $$y2024
000611504 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000611504 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-24
000611504 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000611504 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-24$$wger
000611504 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000611504 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000611504 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000611504 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2024-12-16
000611504 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000611504 980__ $$ajournal
000611504 980__ $$aVDB
000611504 980__ $$aUNRESTRICTED
000611504 980__ $$aI:(DE-H253)HAS-User-20120731
000611504 9801_ $$aFullTexts
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.0c05161
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201706364
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C5RA15370K
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.202207966
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6528/aab6a3
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200400809
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.8b15592
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm303547a
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5037410
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3650
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.200400570
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6528/ab7fd1
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.202000072
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D0TC05368F
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cie.2024.109934
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl302049k
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2216672120
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/am508775c
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fmats.2020.570002
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.6b03499
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.6b06321
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201003641
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.0c18118
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/am503872t
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-85517-7
000611504 999C5 $$2Crossref$$uS.Müller S.Kube Organic Photovoltaics‐ Truly Green Energy : “ Ultra – Low Carbon Footprint ” 2020 WHITEPAPERMarch2020.
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.rser.2023.113652
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.resconrec.2022.106289
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201800141
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-08-102284-9.00017-6
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4804667
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/sia.740230905
000611504 999C5 $$2Crossref$$u“X‐ray photoelectron spectroscopy of atomic elements ” can be found underhttps://www.thermofisher.com/de/de/home/materials‐science/learning‐center/periodic‐table.html(accessed: October 2023).
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.571870
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2005.09.054
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/12/2/307
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c2tc00405d
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.5b02505
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2015.03.007
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jpcs.2018.07.014
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/ICICDT.2019.8790939$$uQ. H.Liu C.Zhao C. Z.Zhao I. Z.Mitrovic S.Hall W. Y.Xu L.Yang E. G.Lim Q. N.Wang Y. L.Wei Y. X.Cao in2019 Int. Conf. IC Des. Technol. IEEE 2019 pp.1–5.
000611504 999C5 $$1Borchert J. W.$$2Crossref$$oBorchert J. W. On the Minimization of Contact Resistance in Organic Thin‐Film Transistors 2020$$tOn the Minimization of Contact Resistance in Organic Thin‐Film Transistors$$y2020
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2013.09.003
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1ME00153A
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsaelm.0c00927
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm049598q
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9783527685172
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200501152
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.202007304
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.3c02010
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2016.04.038
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.202200984
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/polym13213715
000611504 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adem.202100900