| Home > Publications database > Covalent surface grafting of Ti$_3$C$_2$T flakes for enhancement of symmetric supercapacitor performance > print |
| 001 | 611450 | ||
| 005 | 20250715171001.0 | ||
| 024 | 7 | _ | |a 10.1016/j.jpowsour.2024.234710 |2 doi |
| 024 | 7 | _ | |a 0378-7753 |2 ISSN |
| 024 | 7 | _ | |a 1873-2755 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-04919 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001241775700001 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4396912328 |
| 037 | _ | _ | |a PUBDB-2024-04919 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Burtsev, Vasilii |0 P:(DE-H253)PIP1104575 |b 0 |
| 245 | _ | _ | |a Covalent surface grafting of Ti$_3$C$_2$T flakes for enhancement of symmetric supercapacitor performance |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2024 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721908044_3287087 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In this work the covalent surface modification of MXene flakes (Ti$_3$C$_2$T$_x$) was proposed for the increasing of the performance of subsequently created symmetric supercapacitor. Covalent surface modification was performed with utilization of diazonium salts (hydrophobic or hydrophilic) and plasmon-assisted photochemistry. Applied procedure allows to block the reactive (weak and/or catalytically active) sites on flakes surface and increase the flakes interplanar spacing, both enhancing the functionality of an MXene-based supercapacitor. Especially pronounced positive effect gives the surface modification with hydrophilic chemical moieties. In particular, we observed increase of supercapacitance from 197 to 284 F g$^{−1}$ in acidic and from 86 to 142 F g$^{−1}$ in alkaline conditions for flakes grafted with –C$_6$H$_4$–COOH chemical moieties at scan rate 20 mV/s. The flakes grafted with hydrophobic chemical moieties allow to achieve almost constant value of supercapacitance for different speed of charge discharge. In addition, the surface grafting prevents the supercapacitor degradation and decelerates the spontaneous discharge in open circuit mode. These results suggest strategy for further improvement of MXene-based supercapacitors as energy storage device. |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
| 536 | _ | _ | |a FS-Proposal: I-20230229 EC (I-20230229-EC) |0 G:(DE-H253)I-20230229-EC |c I-20230229-EC |x 2 |
| 542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
| 542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
| 542 | _ | _ | |i 2024-05-12 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P03 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P03-20150101 |6 EXP:(DE-H253)P-P03-20150101 |x 0 |
| 700 | 1 | _ | |a Miliutina, Elena |0 P:(DE-H253)PIP1103907 |b 1 |
| 700 | 1 | _ | |a Shilenko, Vera |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Kukralova, Karolina |0 P:(DE-H253)PIP1110471 |b 3 |
| 700 | 1 | _ | |a Chumakov, Andrei |0 P:(DE-H253)PIP1088640 |b 4 |
| 700 | 1 | _ | |a Schwartzkopf, Matthias |0 P:(DE-H253)PIP1010504 |b 5 |u desy |
| 700 | 1 | _ | |a Svorcik, Vaclav |0 P:(DE-H253)PIP1105170 |b 6 |
| 700 | 1 | _ | |a Lancok, Jan |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Chertopalov, Sergii |0 P:(DE-HGF)0 |b 8 |
| 700 | 1 | _ | |a Lyutakov, Oleksiy |0 P:(DE-H253)PIP1105147 |b 9 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1016/j.jpowsour.2024.234710 |b Elsevier BV |d 2024-07-01 |p 234710 |3 journal-article |2 Crossref |t Journal of Power Sources |v 609 |y 2024 |x 0378-7753 |
| 773 | _ | _ | |a 10.1016/j.jpowsour.2024.234710 |g Vol. 609, p. 234710 - |0 PERI:(DE-600)1491915-1 |p 234710 |t Journal of power sources |v 609 |y 2024 |x 0378-7753 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/611450/files/1-s2.0-S0378775324006621-main.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/611450/files/1-s2.0-S0378775324006621-main.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:611450 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1104575 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1103907 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1110471 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1088640 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1010504 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1105170 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1105147 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-06 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-06 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-06 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2022 |d 2024-12-06 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-PET-D-20190712 |k FS-PET-D |l Experimentebetreuung PETRA III |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a I:(DE-H253)FS-PET-D-20190712 |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1002/adma.201706054 |1 Yao |9 -- missing cx lookup -- |2 Crossref |t Adv. Mater. |v 30 |y 2018 |
| 999 | C | 5 | |a 10.1021/acsenergylett.7b01169 |9 -- missing cx lookup -- |1 Kumar |p 482 - |2 Crossref |t ACS Energy Lett. |v 3 |y 2018 |
| 999 | C | 5 | |a 10.1002/aenm.201800227 |1 Jeon |9 -- missing cx lookup -- |2 Crossref |t Adv. Energy Mater. |v 8 |y 2018 |
| 999 | C | 5 | |a 10.1039/D0CS00175A |9 -- missing cx lookup -- |1 Hu |p 6666 - |2 Crossref |t Chem. Soc. Rev. |v 49 |y 2020 |
| 999 | C | 5 | |1 Venkateshalu |y 2020 |2 Crossref |o Venkateshalu 2020 |
| 999 | C | 5 | |a 10.1016/j.ensm.2020.01.018 |9 -- missing cx lookup -- |1 Jiang |p 78 - |2 Crossref |t Energy Storage Mater. |v 27 |y 2020 |
| 999 | C | 5 | |a 10.1038/s41560-019-0339-9 |9 -- missing cx lookup -- |1 Wang |p 241 - |2 Crossref |t Nat. Energy |v 4 |y 2019 |
| 999 | C | 5 | |a 10.1021/acsnano.9b06394 |9 -- missing cx lookup -- |1 Gogotsi |p 8491 - |2 Crossref |t ACS Nano |v 13 |y 2019 |
| 999 | C | 5 | |a 10.1002/anie.202110640 |9 -- missing cx lookup -- |1 Shen |p 27013 - |2 Crossref |t Angew. Chem. Int. Ed. |v 60 |y 2021 |
| 999 | C | 5 | |a 10.1021/acs.chemmater.7b02847 |9 -- missing cx lookup -- |1 Alhabeb |p 7633 - |2 Crossref |t Chem. Mater. |v 29 |y 2017 |
| 999 | C | 5 | |a 10.1016/j.electacta.2021.139476 |1 Guo |9 -- missing cx lookup -- |2 Crossref |t Electrochim. Acta |v 401 |y 2022 |
| 999 | C | 5 | |1 Wang |y 2021 |2 Crossref |o Wang 2021 |
| 999 | C | 5 | |a 10.1039/D0TA11103A |9 -- missing cx lookup -- |1 Hasan |p 3231 - |2 Crossref |t J. Mater. Chem. A |v 9 |y 2021 |
| 999 | C | 5 | |a 10.1021/acs.chemmater.0c02026 |9 -- missing cx lookup -- |1 Guo |p 8257 - |2 Crossref |t Chem. Mater. |v 32 |y 2020 |
| 999 | C | 5 | |a 10.1002/eem2.12090 |9 -- missing cx lookup -- |1 Li |p 306 - |2 Crossref |t Energy Environ. Mater. |v 3 |y 2020 |
| 999 | C | 5 | |a 10.1016/j.est.2023.108151 |1 Mateen |9 -- missing cx lookup -- |2 Crossref |t J. Energy Storage |v 71 |y 2023 |
| 999 | C | 5 | |a 10.1016/j.ensm.2020.11.035 |9 -- missing cx lookup -- |1 Zhu |p 630 - |2 Crossref |t Energy Storage Mater. |v 35 |y 2021 |
| 999 | C | 5 | |1 Li |y 2017 |2 Crossref |o Li 2017 |
| 999 | C | 5 | |1 Xu |y 2022 |2 Crossref |o Xu 2022 |
| 999 | C | 5 | |1 Facure |y 2023 |2 Crossref |o Facure 2023 |
| 999 | C | 5 | |a 10.1039/D2TA04962G |9 -- missing cx lookup -- |1 Xu |p 18812 - |2 Crossref |t J. Mater. Chem. A |v 10 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.carbon.2023.03.042 |9 -- missing cx lookup -- |1 Zhang |p 92 - |2 Crossref |t Carbon |v 208 |y 2023 |
| 999 | C | 5 | |a 10.1016/j.jallcom.2019.152403 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t J. Alloys Compoun. |v 815 |y 2020 |
| 999 | C | 5 | |a 10.1002/smll.201803632 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t Small |v 14 |y 2018 |
| 999 | C | 5 | |a 10.1002/anie.201800887 |9 -- missing cx lookup -- |1 Li |p 6115 - |2 Crossref |t Angew. Chem. Int. Ed. |v 57 |y 2018 |
| 999 | C | 5 | |a 10.1021/acsomega.3c02002 |9 -- missing cx lookup -- |1 Aravind |p 44375 - |2 Crossref |t ACS Omega |v 8 |y 2023 |
| 999 | C | 5 | |a 10.1039/D1QM01059J |9 -- missing cx lookup -- |1 Wang |p 7883 - |2 Crossref |t Mater. Chem. Front. |v 5 |y 2021 |
| 999 | C | 5 | |1 Bo |y 2023 |2 Crossref |o Bo 2023 |
| 999 | C | 5 | |a 10.1016/j.jcis.2022.02.013 |9 -- missing cx lookup -- |1 Gong |p 643 - |2 Crossref |t J. Colloid Interface Sci. |v 615 |y 2022 |
| 999 | C | 5 | |a 10.1021/acs.chemmater.5b01623 |9 -- missing cx lookup -- |1 Rakhi |p 5314 - |2 Crossref |t Chem. Mater. |v 27 |y 2015 |
| 999 | C | 5 | |a 10.1021/acsami.6b06455 |9 -- missing cx lookup -- |1 Han |p 21011 - |2 Crossref |t ACS Appl. Mater. Interfaces |v 8 |y 2016 |
| 999 | C | 5 | |a 10.1126/science.aba8311 |9 -- missing cx lookup -- |1 Kamysbayev |p 979 - |2 Crossref |t Science |v 369 |y 2020 |
| 999 | C | 5 | |a 10.1016/j.jpowsour.2021.230965 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t J. Power Sources |v 521 |y 2022 |
| 999 | C | 5 | |a 10.1039/D3NA00429E |9 -- missing cx lookup -- |1 Buravets |p 6837 - |2 Crossref |t Nanoscale Adv. |v 5 |y 2023 |
| 999 | C | 5 | |a 10.1002/adfm.202212786 |1 Olshtrem |9 -- missing cx lookup -- |2 Crossref |t Adv. Funct. Mater. |v 33 |y 2023 |
| 999 | C | 5 | |a 10.1088/2053-1583/ac27c0 |1 Olshtrem |9 -- missing cx lookup -- |2 Crossref |t 2D Mater. |v 8 |y 2021 |
| 999 | C | 5 | |a 10.1186/s40580-021-00259-6 |9 -- missing cx lookup -- |1 Iqbal |p 9 - |2 Crossref |t Nano Converg |v 8 |y 2021 |
| 999 | C | 5 | |a 10.1007/s40820-023-01069-7 |9 -- missing cx lookup -- |1 Soomro |p 108 - |2 Crossref |t Nano-Micro Lett. |v 15 |y 2023 |
| 999 | C | 5 | |a 10.1016/j.cej.2023.146399 |1 Olshtrem |9 -- missing cx lookup -- |2 Crossref |t Chem. Eng. J. |v 476 |y 2023 |
| 999 | C | 5 | |a 10.1016/j.cej.2022.136939 |1 Neubertova |9 -- missing cx lookup -- |2 Crossref |t Chem. Eng. J. |v 446 |y 2022 |
| 999 | C | 5 | |a 10.1021/acsnano.9b10066 |9 -- missing cx lookup -- |1 Zhou |p 3576 - |2 Crossref |t ACS Nano |v 14 |y 2020 |
| 999 | C | 5 | |a 10.1021/acsmaterialslett.3c00223 |9 -- missing cx lookup -- |1 Li |p 2084 - |2 Crossref |t ACS Mater. Lett. |v 5 |y 2023 |
| 999 | C | 5 | |a 10.1002/aesr.202100147 |1 Zheng |9 -- missing cx lookup -- |2 Crossref |t Adv. Energy Sustain. Res. |v 3 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.carbon.2021.07.011 |9 -- missing cx lookup -- |1 Chernova |p 404 - |2 Crossref |t Carbon |v 183 |y 2021 |
| 999 | C | 5 | |a 10.1021/acs.energyfuels.0c01352 |9 -- missing cx lookup -- |1 Li |p 10120 - |2 Crossref |t Energy Fuels |v 34 |y 2020 |
| 999 | C | 5 | |a 10.1016/j.apsusc.2022.154817 |1 Wei |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 606 |y 2022 |
| 999 | C | 5 | |a 10.1021/acsnano.2c03351 |9 -- missing cx lookup -- |1 Ma |p 9713 - |2 Crossref |t ACS Nano |v 16 |y 2022 |
| 999 | C | 5 | |a 10.1021/acsnano.1c09004 |9 -- missing cx lookup -- |1 Chen |p 2461 - |2 Crossref |t ACS Nano |v 16 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.apsusc.2021.149710 |1 Hwang |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 556 |y 2021 |
| 999 | C | 5 | |a 10.1016/j.est.2024.110686 |1 Donthula |9 -- missing cx lookup -- |2 Crossref |t J. Energy Storage |v 83 |y 2024 |
| 999 | C | 5 | |a 10.1016/j.jcis.2022.02.001 |9 -- missing cx lookup -- |1 Luo |p 282 - |2 Crossref |t J. Colloid Interface Sci. |v 615 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.electacta.2022.139871 |1 Luo |9 -- missing cx lookup -- |2 Crossref |t Electrochim. Acta |v 406 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.jallcom.2024.173522 |1 Zhang |9 -- missing cx lookup -- |2 Crossref |t J. Alloys Compd. |v 983 |y 2024 |
| 999 | C | 5 | |a 10.1002/advs.201800750 |1 Fan |9 -- missing cx lookup -- |2 Crossref |t Adv. Sci. |v 5 |y 2018 |
| 999 | C | 5 | |a 10.1021/acs.energyfuels.0c03939 |9 -- missing cx lookup -- |1 Mahmood |p 3469 - |2 Crossref |t Energy Fuels |v 35 |y 2021 |
| 999 | C | 5 | |a 10.1016/j.jallcom.2019.06.173 |9 -- missing cx lookup -- |1 Zhou |p 259 - |2 Crossref |t J. Alloys Compd. |v 802 |y 2019 |
| 999 | C | 5 | |a 10.1016/j.cej.2022.138398 |1 Wang |9 -- missing cx lookup -- |2 Crossref |t Chem. Eng. J. |v 450 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.jpowsour.2021.230965 |1 Liu |9 -- missing cx lookup -- |2 Crossref |t J. Power Sources |v 521 |y 2022 |
| 999 | C | 5 | |a 10.1039/D1TA10159E |9 -- missing cx lookup -- |1 Li |p 7373 - |2 Crossref |t J. Mater. Chem. A |v 10 |y 2022 |
| 999 | C | 5 | |a 10.1038/nature13970 |9 -- missing cx lookup -- |1 Ghidiu |p 78 - |2 Crossref |t Nature |v 516 |y 2014 |
| 999 | C | 5 | |1 Li |y 2020 |2 Crossref |o Li 2020 |
| 999 | C | 5 | |a 10.1002/adma.201504705 |9 -- missing cx lookup -- |1 Boota |p 1517 - |2 Crossref |t Adv. Mater. |v 28 |y 2016 |
| 999 | C | 5 | |a 10.1016/j.est.2023.110155 |1 Yadav |9 -- missing cx lookup -- |2 Crossref |t J. Energy Storage |v 79 |y 2024 |
| 999 | C | 5 | |a 10.1016/j.est.2022.105986 |1 Li |9 -- missing cx lookup -- |2 Crossref |t J. Energy Storage |v 56 |y 2022 |
| 999 | C | 5 | |a 10.1016/j.jallcom.2019.151928 |1 Peng |9 -- missing cx lookup -- |2 Crossref |t J. Alloys Compd. |v 810 |y 2019 |
| 999 | C | 5 | |a 10.1126/science.1241488 |9 -- missing cx lookup -- |1 Lukatskaya |p 1502 - |2 Crossref |t Science |v 341 |y 2013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|