001     611450
005     20250715171001.0
024 7 _ |a 10.1016/j.jpowsour.2024.234710
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-04919
|2 datacite_doi
024 7 _ |a WOS:001241775700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396912328
037 _ _ |a PUBDB-2024-04919
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Burtsev, Vasilii
|0 P:(DE-H253)PIP1104575
|b 0
245 _ _ |a Covalent surface grafting of Ti$_3$C$_2$T flakes for enhancement of symmetric supercapacitor performance
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721908044_3287087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work the covalent surface modification of MXene flakes (Ti$_3$C$_2$T$_x$) was proposed for the increasing of the performance of subsequently created symmetric supercapacitor. Covalent surface modification was performed with utilization of diazonium salts (hydrophobic or hydrophilic) and plasmon-assisted photochemistry. Applied procedure allows to block the reactive (weak and/or catalytically active) sites on flakes surface and increase the flakes interplanar spacing, both enhancing the functionality of an MXene-based supercapacitor. Especially pronounced positive effect gives the surface modification with hydrophilic chemical moieties. In particular, we observed increase of supercapacitance from 197 to 284 F g$^{−1}$ in acidic and from 86 to 142 F g$^{−1}$ in alkaline conditions for flakes grafted with –C$_6$H$_4$–COOH chemical moieties at scan rate 20 mV/s. The flakes grafted with hydrophobic chemical moieties allow to achieve almost constant value of supercapacitance for different speed of charge discharge. In addition, the surface grafting prevents the supercapacitor degradation and decelerates the spontaneous discharge in open circuit mode. These results suggest strategy for further improvement of MXene-based supercapacitors as energy storage device.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20230229 EC (I-20230229-EC)
|0 G:(DE-H253)I-20230229-EC
|c I-20230229-EC
|x 2
542 _ _ |i 2024-07-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-07-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-05-12
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Miliutina, Elena
|0 P:(DE-H253)PIP1103907
|b 1
700 1 _ |a Shilenko, Vera
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kukralova, Karolina
|0 P:(DE-H253)PIP1110471
|b 3
700 1 _ |a Chumakov, Andrei
|0 P:(DE-H253)PIP1088640
|b 4
700 1 _ |a Schwartzkopf, Matthias
|0 P:(DE-H253)PIP1010504
|b 5
|u desy
700 1 _ |a Svorcik, Vaclav
|0 P:(DE-H253)PIP1105170
|b 6
700 1 _ |a Lancok, Jan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chertopalov, Sergii
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Lyutakov, Oleksiy
|0 P:(DE-H253)PIP1105147
|b 9
|e Corresponding author
773 1 8 |a 10.1016/j.jpowsour.2024.234710
|b Elsevier BV
|d 2024-07-01
|p 234710
|3 journal-article
|2 Crossref
|t Journal of Power Sources
|v 609
|y 2024
|x 0378-7753
773 _ _ |a 10.1016/j.jpowsour.2024.234710
|g Vol. 609, p. 234710 -
|0 PERI:(DE-600)1491915-1
|p 234710
|t Journal of power sources
|v 609
|y 2024
|x 0378-7753
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/611450/files/1-s2.0-S0378775324006621-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/611450/files/1-s2.0-S0378775324006621-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:611450
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1104575
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1103907
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1110471
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1088640
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1010504
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1105170
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1105147
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2024-12-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 1 _ |a FullTexts
999 C 5 |a 10.1002/adma.201706054
|1 Yao
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Mater.
|v 30
|y 2018
999 C 5 |a 10.1021/acsenergylett.7b01169
|9 -- missing cx lookup --
|1 Kumar
|p 482 -
|2 Crossref
|t ACS Energy Lett.
|v 3
|y 2018
999 C 5 |a 10.1002/aenm.201800227
|1 Jeon
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Energy Mater.
|v 8
|y 2018
999 C 5 |a 10.1039/D0CS00175A
|9 -- missing cx lookup --
|1 Hu
|p 6666 -
|2 Crossref
|t Chem. Soc. Rev.
|v 49
|y 2020
999 C 5 |1 Venkateshalu
|y 2020
|2 Crossref
|o Venkateshalu 2020
999 C 5 |a 10.1016/j.ensm.2020.01.018
|9 -- missing cx lookup --
|1 Jiang
|p 78 -
|2 Crossref
|t Energy Storage Mater.
|v 27
|y 2020
999 C 5 |a 10.1038/s41560-019-0339-9
|9 -- missing cx lookup --
|1 Wang
|p 241 -
|2 Crossref
|t Nat. Energy
|v 4
|y 2019
999 C 5 |a 10.1021/acsnano.9b06394
|9 -- missing cx lookup --
|1 Gogotsi
|p 8491 -
|2 Crossref
|t ACS Nano
|v 13
|y 2019
999 C 5 |a 10.1002/anie.202110640
|9 -- missing cx lookup --
|1 Shen
|p 27013 -
|2 Crossref
|t Angew. Chem. Int. Ed.
|v 60
|y 2021
999 C 5 |a 10.1021/acs.chemmater.7b02847
|9 -- missing cx lookup --
|1 Alhabeb
|p 7633 -
|2 Crossref
|t Chem. Mater.
|v 29
|y 2017
999 C 5 |a 10.1016/j.electacta.2021.139476
|1 Guo
|9 -- missing cx lookup --
|2 Crossref
|t Electrochim. Acta
|v 401
|y 2022
999 C 5 |1 Wang
|y 2021
|2 Crossref
|o Wang 2021
999 C 5 |a 10.1039/D0TA11103A
|9 -- missing cx lookup --
|1 Hasan
|p 3231 -
|2 Crossref
|t J. Mater. Chem. A
|v 9
|y 2021
999 C 5 |a 10.1021/acs.chemmater.0c02026
|9 -- missing cx lookup --
|1 Guo
|p 8257 -
|2 Crossref
|t Chem. Mater.
|v 32
|y 2020
999 C 5 |a 10.1002/eem2.12090
|9 -- missing cx lookup --
|1 Li
|p 306 -
|2 Crossref
|t Energy Environ. Mater.
|v 3
|y 2020
999 C 5 |a 10.1016/j.est.2023.108151
|1 Mateen
|9 -- missing cx lookup --
|2 Crossref
|t J. Energy Storage
|v 71
|y 2023
999 C 5 |a 10.1016/j.ensm.2020.11.035
|9 -- missing cx lookup --
|1 Zhu
|p 630 -
|2 Crossref
|t Energy Storage Mater.
|v 35
|y 2021
999 C 5 |1 Li
|y 2017
|2 Crossref
|o Li 2017
999 C 5 |1 Xu
|y 2022
|2 Crossref
|o Xu 2022
999 C 5 |1 Facure
|y 2023
|2 Crossref
|o Facure 2023
999 C 5 |a 10.1039/D2TA04962G
|9 -- missing cx lookup --
|1 Xu
|p 18812 -
|2 Crossref
|t J. Mater. Chem. A
|v 10
|y 2022
999 C 5 |a 10.1016/j.carbon.2023.03.042
|9 -- missing cx lookup --
|1 Zhang
|p 92 -
|2 Crossref
|t Carbon
|v 208
|y 2023
999 C 5 |a 10.1016/j.jallcom.2019.152403
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t J. Alloys Compoun.
|v 815
|y 2020
999 C 5 |a 10.1002/smll.201803632
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t Small
|v 14
|y 2018
999 C 5 |a 10.1002/anie.201800887
|9 -- missing cx lookup --
|1 Li
|p 6115 -
|2 Crossref
|t Angew. Chem. Int. Ed.
|v 57
|y 2018
999 C 5 |a 10.1021/acsomega.3c02002
|9 -- missing cx lookup --
|1 Aravind
|p 44375 -
|2 Crossref
|t ACS Omega
|v 8
|y 2023
999 C 5 |a 10.1039/D1QM01059J
|9 -- missing cx lookup --
|1 Wang
|p 7883 -
|2 Crossref
|t Mater. Chem. Front.
|v 5
|y 2021
999 C 5 |1 Bo
|y 2023
|2 Crossref
|o Bo 2023
999 C 5 |a 10.1016/j.jcis.2022.02.013
|9 -- missing cx lookup --
|1 Gong
|p 643 -
|2 Crossref
|t J. Colloid Interface Sci.
|v 615
|y 2022
999 C 5 |a 10.1021/acs.chemmater.5b01623
|9 -- missing cx lookup --
|1 Rakhi
|p 5314 -
|2 Crossref
|t Chem. Mater.
|v 27
|y 2015
999 C 5 |a 10.1021/acsami.6b06455
|9 -- missing cx lookup --
|1 Han
|p 21011 -
|2 Crossref
|t ACS Appl. Mater. Interfaces
|v 8
|y 2016
999 C 5 |a 10.1126/science.aba8311
|9 -- missing cx lookup --
|1 Kamysbayev
|p 979 -
|2 Crossref
|t Science
|v 369
|y 2020
999 C 5 |a 10.1016/j.jpowsour.2021.230965
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t J. Power Sources
|v 521
|y 2022
999 C 5 |a 10.1039/D3NA00429E
|9 -- missing cx lookup --
|1 Buravets
|p 6837 -
|2 Crossref
|t Nanoscale Adv.
|v 5
|y 2023
999 C 5 |a 10.1002/adfm.202212786
|1 Olshtrem
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Funct. Mater.
|v 33
|y 2023
999 C 5 |a 10.1088/2053-1583/ac27c0
|1 Olshtrem
|9 -- missing cx lookup --
|2 Crossref
|t 2D Mater.
|v 8
|y 2021
999 C 5 |a 10.1186/s40580-021-00259-6
|9 -- missing cx lookup --
|1 Iqbal
|p 9 -
|2 Crossref
|t Nano Converg
|v 8
|y 2021
999 C 5 |a 10.1007/s40820-023-01069-7
|9 -- missing cx lookup --
|1 Soomro
|p 108 -
|2 Crossref
|t Nano-Micro Lett.
|v 15
|y 2023
999 C 5 |a 10.1016/j.cej.2023.146399
|1 Olshtrem
|9 -- missing cx lookup --
|2 Crossref
|t Chem. Eng. J.
|v 476
|y 2023
999 C 5 |a 10.1016/j.cej.2022.136939
|1 Neubertova
|9 -- missing cx lookup --
|2 Crossref
|t Chem. Eng. J.
|v 446
|y 2022
999 C 5 |a 10.1021/acsnano.9b10066
|9 -- missing cx lookup --
|1 Zhou
|p 3576 -
|2 Crossref
|t ACS Nano
|v 14
|y 2020
999 C 5 |a 10.1021/acsmaterialslett.3c00223
|9 -- missing cx lookup --
|1 Li
|p 2084 -
|2 Crossref
|t ACS Mater. Lett.
|v 5
|y 2023
999 C 5 |a 10.1002/aesr.202100147
|1 Zheng
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Energy Sustain. Res.
|v 3
|y 2022
999 C 5 |a 10.1016/j.carbon.2021.07.011
|9 -- missing cx lookup --
|1 Chernova
|p 404 -
|2 Crossref
|t Carbon
|v 183
|y 2021
999 C 5 |a 10.1021/acs.energyfuels.0c01352
|9 -- missing cx lookup --
|1 Li
|p 10120 -
|2 Crossref
|t Energy Fuels
|v 34
|y 2020
999 C 5 |a 10.1016/j.apsusc.2022.154817
|1 Wei
|9 -- missing cx lookup --
|2 Crossref
|t Appl. Surf. Sci.
|v 606
|y 2022
999 C 5 |a 10.1021/acsnano.2c03351
|9 -- missing cx lookup --
|1 Ma
|p 9713 -
|2 Crossref
|t ACS Nano
|v 16
|y 2022
999 C 5 |a 10.1021/acsnano.1c09004
|9 -- missing cx lookup --
|1 Chen
|p 2461 -
|2 Crossref
|t ACS Nano
|v 16
|y 2022
999 C 5 |a 10.1016/j.apsusc.2021.149710
|1 Hwang
|9 -- missing cx lookup --
|2 Crossref
|t Appl. Surf. Sci.
|v 556
|y 2021
999 C 5 |a 10.1016/j.est.2024.110686
|1 Donthula
|9 -- missing cx lookup --
|2 Crossref
|t J. Energy Storage
|v 83
|y 2024
999 C 5 |a 10.1016/j.jcis.2022.02.001
|9 -- missing cx lookup --
|1 Luo
|p 282 -
|2 Crossref
|t J. Colloid Interface Sci.
|v 615
|y 2022
999 C 5 |a 10.1016/j.electacta.2022.139871
|1 Luo
|9 -- missing cx lookup --
|2 Crossref
|t Electrochim. Acta
|v 406
|y 2022
999 C 5 |a 10.1016/j.jallcom.2024.173522
|1 Zhang
|9 -- missing cx lookup --
|2 Crossref
|t J. Alloys Compd.
|v 983
|y 2024
999 C 5 |a 10.1002/advs.201800750
|1 Fan
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Sci.
|v 5
|y 2018
999 C 5 |a 10.1021/acs.energyfuels.0c03939
|9 -- missing cx lookup --
|1 Mahmood
|p 3469 -
|2 Crossref
|t Energy Fuels
|v 35
|y 2021
999 C 5 |a 10.1016/j.jallcom.2019.06.173
|9 -- missing cx lookup --
|1 Zhou
|p 259 -
|2 Crossref
|t J. Alloys Compd.
|v 802
|y 2019
999 C 5 |a 10.1016/j.cej.2022.138398
|1 Wang
|9 -- missing cx lookup --
|2 Crossref
|t Chem. Eng. J.
|v 450
|y 2022
999 C 5 |a 10.1016/j.jpowsour.2021.230965
|1 Liu
|9 -- missing cx lookup --
|2 Crossref
|t J. Power Sources
|v 521
|y 2022
999 C 5 |a 10.1039/D1TA10159E
|9 -- missing cx lookup --
|1 Li
|p 7373 -
|2 Crossref
|t J. Mater. Chem. A
|v 10
|y 2022
999 C 5 |a 10.1038/nature13970
|9 -- missing cx lookup --
|1 Ghidiu
|p 78 -
|2 Crossref
|t Nature
|v 516
|y 2014
999 C 5 |1 Li
|y 2020
|2 Crossref
|o Li 2020
999 C 5 |a 10.1002/adma.201504705
|9 -- missing cx lookup --
|1 Boota
|p 1517 -
|2 Crossref
|t Adv. Mater.
|v 28
|y 2016
999 C 5 |a 10.1016/j.est.2023.110155
|1 Yadav
|9 -- missing cx lookup --
|2 Crossref
|t J. Energy Storage
|v 79
|y 2024
999 C 5 |a 10.1016/j.est.2022.105986
|1 Li
|9 -- missing cx lookup --
|2 Crossref
|t J. Energy Storage
|v 56
|y 2022
999 C 5 |a 10.1016/j.jallcom.2019.151928
|1 Peng
|9 -- missing cx lookup --
|2 Crossref
|t J. Alloys Compd.
|v 810
|y 2019
999 C 5 |a 10.1126/science.1241488
|9 -- missing cx lookup --
|1 Lukatskaya
|p 1502 -
|2 Crossref
|t Science
|v 341
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21