001 | 611275 | ||
005 | 20250715171327.0 | ||
024 | 7 | _ | |a 10.1107/S1600577524003801 |2 doi |
024 | 7 | _ | |a 0909-0495 |2 ISSN |
024 | 7 | _ | |a 1600-5775 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-04882 |2 datacite_doi |
024 | 7 | _ | |a altmetric:164847076 |2 altmetric |
024 | 7 | _ | |a pmid:38917016 |2 pmid |
024 | 7 | _ | |a WOS:001274892400029 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4400000764 |
037 | _ | _ | |a PUBDB-2024-04882 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Flenner, Silja |0 P:(DE-H253)PIP1030015 |b 0 |e Corresponding author |
245 | _ | _ | |a Dual-beam X-ray nano-holotomography |
260 | _ | _ | |c 2024 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1726219540_4158693 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a This research was supported in part through the Maxwellcomputational resources operated at DESY. Funding isacknowledged from Deutsche Forschungsgemeinschaft (grantNo. 192346071). |
520 | _ | _ | |a Nanotomography with hard X-rays is a widely used technique for high-resolution imaging, providing insights into the structure and composition of various materials. In recent years, tomographic approaches based on simultaneous illuminations of the same sample region from different angles by multiple beams have been developed at micrometre image resolution. Transferring these techniques to the nanoscale is challenging due to the loss in photon flux by focusing the X-ray beam. We present an approach for multi-beam nanotomography using a dual-beam Fresnel zone plate (dFZP) in a near-field holography setup. The dFZP generates two nano-focused beams that overlap in the sample plane, enabling the simultaneous acquisition of two projections from slightly different angles. This first proof-of-principle implementation of the dual-beam setup allows for the efficient removal of ring artifacts and noise using machine-learning approaches. The results open new possibilities for full-field multi-beam nanotomography and pave the way for future advancements in fast holotomography and artifact-reduction techniques. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a DFG project 192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071) |0 G:(GEPRIS)192346071 |c 192346071 |x 2 |
542 | _ | _ | |i 2024-06-25 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/legalcode |
542 | _ | _ | |i 2024-06-25 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/legalcode |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P05 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P05-20150101 |6 EXP:(DE-H253)P-P05-20150101 |x 0 |
700 | 1 | _ | |a Kubec, Adam |0 P:(DE-H253)PIP1015594 |b 1 |
700 | 1 | _ | |a David, Christian |0 P:(DE-H253)PIP1013976 |b 2 |
700 | 1 | _ | |a Greving, Imke |0 P:(DE-H253)PIP1009579 |b 3 |
700 | 1 | _ | |a Hagemann, Johannes |0 P:(DE-H253)PIP1025514 |b 4 |
773 | 1 | 8 | |a 10.1107/s1600577524003801 |b International Union of Crystallography (IUCr) |d 2024-06-25 |n 4 |p 916-922 |3 journal-article |2 Crossref |t Journal of Synchrotron Radiation |v 31 |y 2024 |x 1600-5775 |
773 | _ | _ | |a 10.1107/S1600577524003801 |g Vol. 31, no. 4 |0 PERI:(DE-600)2021413-3 |n 4 |p 916-922 |t Journal of synchrotron radiation |v 31 |y 2024 |x 1600-5775 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/611275/files/mo5283.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/611275/files/mo5283.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:611275 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Helmholtz-Zentrum Geesthacht |0 I:(DE-588b)16087541-9 |k HZG |b 0 |6 P:(DE-H253)PIP1030015 |
910 | 1 | _ | |a Helmholtz-Zentrum Hereon |0 I:(DE-588b)1231250402 |k Hereon |b 0 |6 P:(DE-H253)PIP1030015 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1030015 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1015594 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1013976 |
910 | 1 | _ | |a Helmholtz-Zentrum Geesthacht |0 I:(DE-588b)16087541-9 |k HZG |b 3 |6 P:(DE-H253)PIP1009579 |
910 | 1 | _ | |a Helmholtz-Zentrum Hereon |0 I:(DE-588b)1231250402 |k Hereon |b 3 |6 P:(DE-H253)PIP1009579 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1025514 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-06 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J SYNCHROTRON RADIAT : 2022 |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-03-08T13:56:53Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-06 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-06 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-06 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-06 |
920 | 1 | _ | |0 I:(DE-H253)Hereon-20210428 |k Hereon |l Helmholtz-Zentrum Hereon |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-20140814 |k FS-PETRA |l FS-PETRA |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)Hereon-20210428 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-20140814 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1107/S1600577521007074 |9 -- missing cx lookup -- |1 Alizadehfanaloo |p 1518 - |2 Crossref |t J. Synchrotron Rad. |v 28 |y 2021 |
999 | C | 5 | |a 10.1364/OE.492137 |9 -- missing cx lookup -- |1 Bellucci |p 18399 - |2 Crossref |t Opt. Express |v 31 |y 2023 |
999 | C | 5 | |a 10.1364/OE.14.012071 |9 -- missing cx lookup -- |1 Boin |p 12071 - |2 Crossref |t Opt. Express |v 14 |y 2006 |
999 | C | 5 | |a 10.1364/OE.17.017669 |9 -- missing cx lookup -- |1 Chao |p 17669 - |2 Crossref |t Opt. Express |v 17 |y 2009 |
999 | C | 5 | |a 10.1063/1.125225 |9 -- missing cx lookup -- |1 Cloetens |p 2912 - |2 Crossref |t Appl. Phys. Lett. |v 75 |y 1999 |
999 | C | 5 | |1 Crowther |y 1970 |2 Crossref |o Crowther 1970 |
999 | C | 5 | |a 10.1038/s41566-019-0419-1 |9 -- missing cx lookup -- |1 Duarte |p 449 - |2 Crossref |t Nat. Photon. |v 13 |y 2019 |
999 | C | 5 | |a 10.1107/S1600577521011139 |9 -- missing cx lookup -- |1 Flenner |p 230 - |2 Crossref |t J. Synchrotron Rad. |v 29 |y 2022 |
999 | C | 5 | |1 Flenner |y 2022 |2 Crossref |o Flenner 2022 |
999 | C | 5 | |a 10.1107/S1600577522012103 |9 -- missing cx lookup -- |1 Flenner |p 390 - |2 Crossref |t J. Synchrotron Rad. |v 30 |y 2023 |
999 | C | 5 | |a 10.1364/OE.406074 |9 -- missing cx lookup -- |1 Flenner |p 37514 - |2 Crossref |t Opt. Express |v 28 |y 2020 |
999 | C | 5 | |a 10.1002/adma.202002758 |9 -- missing cx lookup -- |1 Flenner |p 2002758 - |2 Crossref |t Adv. Mater. |v 32 |y 2020 |
999 | C | 5 | |a 10.1002/adma.202104659 |9 -- missing cx lookup -- |1 García-Moreno |p 2104659 - |2 Crossref |t Adv. Mater. |v 33 |y 2021 |
999 | C | 5 | |a 10.1107/S0909049511002366 |9 -- missing cx lookup -- |1 Gorelick |p 442 - |2 Crossref |t J. Synchrotron Rad. |v 18 |y 2011 |
999 | C | 5 | |a 10.1107/S1600577514013939 |9 -- missing cx lookup -- |1 Gürsoy |p 1188 - |2 Crossref |t J. Synchrotron Rad. |v 21 |y 2014 |
999 | C | 5 | |a 10.1063/1.5029927 |9 -- missing cx lookup -- |1 Hagemann |p 041109 - |2 Crossref |t Appl. Phys. Lett. |v 113 |y 2018 |
999 | C | 5 | |a 10.1107/S160057752001557X |9 -- missing cx lookup -- |1 Hagemann |p 52 - |2 Crossref |t J. Synchrotron Rad. |v 28 |y 2021 |
999 | C | 5 | |a 10.1107/S0909049511017547 |9 -- missing cx lookup -- |1 Hoshino |p 569 - |2 Crossref |t J. Synchrotron Rad. |v 18 |y 2011 |
999 | C | 5 | |a 10.1063/5.0084480 |9 -- missing cx lookup -- |1 Husband |p 053903 - |2 Crossref |t Rev. Sci. Instrum. |v 93 |y 2022 |
999 | C | 5 | |a 10.1364/OL.43.004811 |9 -- missing cx lookup -- |1 Jacobsen |p 4811 - |2 Crossref |t Opt. Lett. |v 43 |y 2018 |
999 | C | 5 | |a 10.1088/1748-0221/13/04/C04011 |9 -- missing cx lookup -- |1 Kubec |p C04011 - |2 Crossref |t J. Instrum. |v 13 |y 2018 |
999 | C | 5 | |2 Crossref |u Lohse, L., Robisch, A.-L., Töpperwien, M., Maretzke, S., Krenkel, M., Hagemann, J. & Salditt, T. (2020a). Holotomotoolbox, https://gitlab.gwdg.de/irp/holotomotoolbox. |
999 | C | 5 | |a 10.1107/S1600577520002398 |9 -- missing cx lookup -- |1 Lohse |p 852 - |2 Crossref |t J. Synchrotron Rad. |v 27 |y 2020 |
999 | C | 5 | |a 10.1038/s41598-022-09466-5 |9 -- missing cx lookup -- |1 Lyubomirskiy |p 6203 - |2 Crossref |t Sci. Rep. |v 12 |y 2022 |
999 | C | 5 | |a 10.1117/12.560046 |9 -- missing cx lookup -- |1 Maser |p 185 - |2 Crossref |t Proc. SPIE |v 5539 |y 2004 |
999 | C | 5 | |a 10.3390/met11091422 |9 -- missing cx lookup -- |1 Meyer |p 1422 - |2 Crossref |t Metals |v 11 |y 2021 |
999 | C | 5 | |a 10.1038/22498 |9 -- missing cx lookup -- |1 Miao |p 342 - |2 Crossref |t Nature |v 400 |y 1999 |
999 | C | 5 | |a 10.1038/srep43624 |9 -- missing cx lookup -- |1 Mohacsi |p 43624 - |2 Crossref |t Sci. Rep. |v 7 |y 2017 |
999 | C | 5 | |a 10.1364/OE.17.008567 |9 -- missing cx lookup -- |1 Münch |p 8567 - |2 Crossref |t Opt. Express |v 17 |y 2009 |
999 | C | 5 | |a 10.1088/1361-6501/aa9dd9 |9 -- missing cx lookup -- |1 Pelt |p 034002 - |2 Crossref |t Meas. Sci. Technol. |v 29 |y 2018 |
999 | C | 5 | |a 10.1088/0031-9155/54/12/018 |9 -- missing cx lookup -- |1 Prell |p 3881 - |2 Crossref |t Phys. Med. Biol. |v 54 |y 2009 |
999 | C | 5 | |a 10.1107/S1600577514005852 |9 -- missing cx lookup -- |1 Rack |p 815 - |2 Crossref |t J. Synchrotron Rad. |v 21 |y 2014 |
999 | C | 5 | |a 10.1016/j.mee.2018.01.033 |9 -- missing cx lookup -- |1 Rösner |p 91 - |2 Crossref |t Microelectron. Eng. |v 191 |y 2018 |
999 | C | 5 | |a 10.1038/s41598-018-23449-5 |9 -- missing cx lookup -- |1 Ruhlandt |p 5245 - |2 Crossref |t Sci. Rep. |v 8 |y 2018 |
999 | C | 5 | |a 10.1098/rsif.2018.0692 |9 -- missing cx lookup -- |1 Schaber |p 20180692 - |2 Crossref |t J. R. Soc. Interface. |v 16 |y 2019 |
999 | C | 5 | |a 10.1364/OE.394262 |9 -- missing cx lookup -- |1 Sowa |p 23223 - |2 Crossref |t Opt. Express |v 28 |y 2020 |
999 | C | 5 | |a 10.1364/OE.23.027975 |9 -- missing cx lookup -- |1 Van Nieuwenhove |p 27975 - |2 Crossref |t Opt. Express |v 23 |y 2015 |
999 | C | 5 | |a 10.1364/OPTICA.5.001521 |9 -- missing cx lookup -- |1 Villanueva-Perez |p 1521 - |2 Crossref |t Optica |v 5 |y 2018 |
999 | C | 5 | |a 10.1364/OPTICA.384804 |9 -- missing cx lookup -- |1 Voegeli |p 514 - |2 Crossref |t Optica |v 7 |y 2020 |
999 | C | 5 | |a 10.1364/OPTICA.447021 |9 -- missing cx lookup -- |1 Wittwer |p 295 - |2 Crossref |t Optica |v 9 |y 2022 |
999 | C | 5 | |a 10.1016/j.nanoen.2020.105196 |9 -- missing cx lookup -- |1 Zhou |p 105196 - |2 Crossref |t Nano Energy |v 77 |y 2020 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|