Home > Publications database > Transient heating of Pd nanoparticles studied by x-ray diffraction with timeof arrival photon detection > print |
001 | 611022 | ||
005 | 20250715171328.0 | ||
024 | 7 | _ | |a 10.1063/5.0189052 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-04784 |2 datacite_doi |
024 | 7 | _ | |a 38974812 |2 pmid |
024 | 7 | _ | |a WOS:001262132200001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4400284947 |
037 | _ | _ | |a PUBDB-2024-04784 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Chung, Simon |0 P:(DE-H253)PIP1082934 |b 0 |e Corresponding author |u desy |
245 | _ | _ | |a Transient heating of Pd nanoparticles studied by x-ray diffraction with timeof arrival photon detection |
260 | _ | _ | |a Melville, NY |c 2024 |b AIP Publishing LLC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734599557_44243 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Pulsed laser heating of an ensemble of Pd nanoparticles, supported by an MgO substrate, is studied by x-raydiffraction. By time-resolved Bragg peak shift measurements due to thermal lattice expansion, the transienttemperature of the Pd nanoparticles is determined, which quickly rises by at least 100 K upon laser excitationand then decays within 90 ns. The diffraction experiments were carried out using a Cu x-ray tube, givingcontinuous radiation and the hybrid pixel detector Timepix3 operating with single photon counting in a time-of-arrival mode. This type of detection scheme does not require time-consuming scanning of the pump-probedelay. The experimental time resolution is estimated at 15 ± 5 ns, which is very close to the detector’s limitand matches with the 7 ns laser pulse duration. Compared to bulk metal single crystals, it is discussed thatthe maximum temperature reached by the Pd nanoparticles is higher and their cooling rate is lower. Theseeffects are explained by the oxide support having a lower heat conductivity. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a Nanolab |e DESY NanoLab: X-Ray Diffraction |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-03-20150101 |5 EXP:(DE-H253)Nanolab-03-20150101 |x 0 |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 1 |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Sample Preparation |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-01-20150101 |5 EXP:(DE-H253)Nanolab-01-20150101 |x 2 |
700 | 1 | _ | |a Vonk, Vedran |0 P:(DE-H253)PIP1013931 |b 1 |e Corresponding author |
700 | 1 | _ | |a Pennicard, David |0 P:(DE-H253)PIP1008603 |b 2 |
700 | 1 | _ | |a Graafsma, Heinz |0 P:(DE-H253)PIP1005340 |b 3 |
700 | 1 | _ | |a Stierle, Andreas |0 P:(DE-H253)PIP1012873 |b 4 |
773 | 1 | 8 | |a 10.1063/5.0189052 |b AIP Publishing |d 2024-07-01 |n 4 |3 journal-article |2 Crossref |t Structural Dynamics |v 11 |y 2024 |x 2329-7778 |
773 | _ | _ | |a 10.1063/5.0189052 |g Vol. 11, no. 4, p. 044301 |0 PERI:(DE-600)2758684-4 |n 4 |p 044301 |t Structural dynamics |v 11 |y 2024 |x 2329-7778 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/SDY_invoice_SDY23-AR-00132_00288_240619_172456-1-2-1.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/Chung_Vonk_AIP_StructDyn_2024.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/SDY_invoice_SDY23-AR-00132_00288_240619_172456-1-2-1.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/611022/files/Chung_Vonk_AIP_StructDyn_2024.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:611022 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1082934 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1082934 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1013931 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1013931 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1008603 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 2 |6 P:(DE-H253)PIP1008603 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 3 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 3 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1012873 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1012873 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2018-07-26T13:37:32Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2018-07-26T13:37:32Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2018-07-26T13:37:32Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b STRUCT DYNAM-US : 2022 |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-01 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-01 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-DS-20120731 |k FS-DS |l FS-Detektor Systeme |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-DS-20120731 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1063/1.1524305 |9 -- missing cx lookup -- |p 793 - |2 Crossref |t J. Appl. Phys. |v 93 |y 2003 |
999 | C | 5 | |a 10.1038/nnano.2010.149 |9 -- missing cx lookup -- |p 718 - |2 Crossref |t Nat. Nanotechnol. |v 5 |y 2010 |
999 | C | 5 | |a 10.1126/science.1225549 |9 -- missing cx lookup -- |p 936 - |2 Crossref |t Science |v 338 |y 2012 |
999 | C | 5 | |a 10.3390/nano9040501 |9 -- missing cx lookup -- |p 501 - |2 Crossref |t Nanomaterials |v 9 |y 2019 |
999 | C | 5 | |a 10.1021/nl2023564 |9 -- missing cx lookup -- |p 4697 - |2 Crossref |t Nano Lett. |v 11 |y 2011 |
999 | C | 5 | |a 10.1021/acsnano.1c03002 |9 -- missing cx lookup -- |p 13267 - |2 Crossref |t ACS Nano |v 15 |y 2021 |
999 | C | 5 | |a 10.1063/1.4959252 |9 -- missing cx lookup -- |p 043107 - |2 Crossref |t Appl. Phys. Lett. |v 109 |y 2016 |
999 | C | 5 | |1 Freund |y 1998 |2 Crossref |t Time Structure of X-Ray Sources and Its Applications |o Freund Time Structure of X-Ray Sources and Its Applications 1998 |
999 | C | 5 | |a 10.1088/1748-0221/9/05/C05013 |9 -- missing cx lookup -- |p C05013 - |2 Crossref |t J. Instrum. |v 9 |y 2014 |
999 | C | 5 | |a 10.1016/j.nima.2007.08.079 |9 -- missing cx lookup -- |p 485 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. Sect. A |v 581 |y 2007 |
999 | C | 5 | |a 10.1088/1748-0221/10/01/C01039 |9 -- missing cx lookup -- |p C01039 - |2 Crossref |t J. Instrum. |v 10 |y 2015 |
999 | C | 5 | |a 10.17815/jlsrf-2-140 |9 -- missing cx lookup -- |p A76 - |2 Crossref |t J. Large-Scale Res. Facilities |v 2 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRev.95.359 |9 -- missing cx lookup -- |p 359 - |2 Crossref |t Phys. Rev. |v 95 |y 1954 |
999 | C | 5 | |a 10.1088/1748-0221/14/10/P10003 |9 -- missing cx lookup -- |p P10003 - |2 Crossref |t J. Instrum. |v 14 |y 2019 |
999 | C | 5 | |a 10.1107/S0021889893004868 |9 -- missing cx lookup -- |p 706 - |2 Crossref |t J. Appl. Crystallogr. |v 26 |y 1993 |
999 | C | 5 | |2 Crossref |u F. Pitters , N.Alipour Tehrani, D.Dannheim, A.Fiergolski, D.Hynds, W.Klempt, X.Llopart, M.Munker, A.Nürnberg, S.Spannagel, and M.Williams, arXiv:1901.07007 (2019). |
999 | C | 5 | |a 10.1016/j.nima.2019.03.077 |9 -- missing cx lookup -- |p 185 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. Sect. A |v 930 |y 2019 |
999 | C | 5 | |a 10.1016/j.nima.2016.04.075 |9 -- missing cx lookup -- |p 639 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. Sect. A |v 845 |y 2017 |
999 | C | 5 | |a 10.1016/j.surfcoat.2007.08.002 |9 -- missing cx lookup -- |p 2306 - |2 Crossref |t Surf. Coat. Technol. |v 202 |y 2008 |
999 | C | 5 | |a 10.1021/ac60319a011 |9 -- missing cx lookup -- |p 1733 - |2 Crossref |t Anal. Chem. |v 44 |y 1972 |
999 | C | 5 | |a 10.1016/0038-1098(73)90754-0 |9 -- missing cx lookup -- |p 1903 - |2 Crossref |t Solid State Commun. |v 13 |y 1973 |
999 | C | 5 | |a 10.1107/S0567739473000495 |9 -- missing cx lookup -- |p 208 - |2 Crossref |t Acta Crystallogr. Sect. A |v 29 |y 1973 |
999 | C | 5 | |a 10.1107/S0108768197008963 |9 -- missing cx lookup -- |p 8 - |2 Crossref |t Acta Crystallogr. Sect. B |v 54 |y 1998 |
999 | C | 5 | |a 10.1107/S010876739601327X |9 -- missing cx lookup -- |p 181 - |2 Crossref |t Acta Crystallogr. Sect. A |v 53 |y 1997 |
999 | C | 5 | |y 1990 |2 Crossref |t X-Ray Diffraction |o X-Ray Diffraction 1990 |
999 | C | 5 | |a 10.1088/1748-0221/17/01/C01044 |9 -- missing cx lookup -- |p C01044 - |2 Crossref |t J. Instrum. |v 17 |y 2022 |
999 | C | 5 | |a 10.6028/jres.103.021 |9 -- missing cx lookup -- |p 357 - |2 Crossref |t J. Res. Nat. Inst. Standards Technol. |v 103 |y 1998 |
999 | C | 5 | |a 10.1016/0012-821X(92)90160-W |9 -- missing cx lookup -- |p 185 - |2 Crossref |t Earth Planet. Sci. Lett. |v 114 |y 1992 |
999 | C | 5 | |a 10.1063/1.3253100 |9 -- missing cx lookup -- |p 279 - |2 Crossref |t J. Phys. Chem. Ref. Data |v 1 |y 2009 |
999 | C | 5 | |a 10.1063/1.3253137 |9 -- missing cx lookup -- |p 163 - |2 Crossref |t J. Phys. Chem. Ref. Data |v 3 |y 2009 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|