001     610956
005     20250723171828.0
024 7 _ |a 10.1364/OE.533354
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-04763
|2 datacite_doi
024 7 _ |a 39573077
|2 pmid
024 7 _ |a WOS:001318649400005
|2 WOS
024 7 _ |a openalex:W4401635488
|2 openalex
037 _ _ |a PUBDB-2024-04763
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Matlis, Nicholas
|0 P:(DE-H253)PIP1026174
|b 0
|e First author
245 _ _ |a Scaling narrowband THz generation to large apertures in LiNbO$_3$ and KTP
260 _ _ |a Washington, DC
|c 2024
|b Optica
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1731486524_1796408
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Millijoule-scale pulses of multicycle terahertz (MC-THz) are increasingly being pursued as drivers for applications requiring high-fields and high spectral brightness. An attractive approach for generating high peak-power MC-THz pulses is nonlinear optical down-conversion of laser pulses in periodically-poled crystals. A principal limitation to the yield, however, is the small (sub-centimeter) apertures of commercially-available crystals which restrict the amount of laser energy that can be used. Here, we explore MC-THz generation by down conversion in two types of large-aperture media for which periodic poling has been achieved in different ways: (1) extension of traditional, voltage-based poling of bulk material to larger (centimeter) scales; and (2) manual poling by assembly of large aperture sub-millimeter thick wafers in alternating orientations. We explore the dependence of efficiency on laser peak fluence and crystal length for both types of media and extend upon previous work with the wafer approach by increasing the number of wafers in the stack, implementing cryogenic cooling and testing an alternate material: potassium titanyl phosphate (KTP). Driving with up to 0.2 J, half-picosecond laser pulses, we obtain conversion efficiencies of up to 0.14%, resulting in ~1% bandwidth MC-THz pulses of up to 207 uJ.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)405983224 - Erzeugung von Sub-Picosekunden Elektronenpaketen durch starke THz-Felder für Hochfeld- Elektronenbeschleunigung und ultraschnelle Elektronen-beugende Bildgebung (405983224)
|0 G:(GEPRIS)405983224
|c 405983224
|x 1
542 _ _ |i 2024-09-04
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
542 _ _ |i 2024-09-04
|2 Crossref
|u https://opg.optica.org/policies/opg-tdm-policy.json
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)AXSIS-20200101
|5 EXP:(DE-H253)AXSIS-20200101
|x 0
700 1 _ |a Olgun, Halil Tarik
|0 P:(DE-H253)PIP1016223
|b 1
700 1 _ |a Rentschler, Christian
|0 P:(DE-H253)PIP1097267
|b 2
700 1 _ |a Ravi, Koustuban
|0 P:(DE-H253)PIP1019059
|b 3
700 1 _ |a Taira, Tokunara
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ishizuki, Hideka
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kärtner, Franz
|0 P:(DE-H253)PIP1013198
|b 6
|e Corresponding author
770 _ _ |a Tiny Integrated Lasers and Their Application to Industrial Laser Technologie
773 1 8 |a 10.1364/oe.533354
|b Optica Publishing Group
|d 2024-09-04
|n 19
|p 33875
|3 journal-article
|2 Crossref
|t Optics Express
|v 32
|y 2024
|x 1094-4087
773 _ _ |a 10.1364/OE.533354
|g Vol. 32, no. 19, p. 33875 -
|0 PERI:(DE-600)1491859-6
|n 19
|p 33875
|t Optics express
|v 32
|y 2024
|x 1094-4087
856 4 _ |u https://bib-pubdb1.desy.de/record/610956/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/610956/files/Institution%20Portal.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/610956/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/610956/files/Institution%20Portal.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/610956/files/oe-32-19-33875.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/610956/files/oe-32-19-33875.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:610956
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1026174
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1026174
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1016223
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1016223
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1097267
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1097267
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1019059
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1019059
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1013198
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1013198
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1013198
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a TIB: Optica 01/01/2023
|0 PC:(DE-HGF)0123
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPT EXPRESS : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-05-08T07:03:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-05-08T07:03:57Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-05-08T07:03:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-H253)FS-CFEL-2-20120731
|k FS-CFEL-2
|l Ultrafast Lasers & X-rays Division
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-2-20120731
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1038/srep22256
|9 -- missing cx lookup --
|1 Green
|p 22256 -
|2 Crossref
|t Sci. Rep.
|v 6
|y 2016
999 C 5 |a 10.34133/2021/9848526
|9 -- missing cx lookup --
|1 Zhang
|p 9848526 -
|2 Crossref
|t Ultrafast Sci.
|v 2021
|y 2021
999 C 5 |a 10.1038/ncomms9486
|9 -- missing cx lookup --
|1 Nanni
|p 8486 -
|2 Crossref
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1038/s41566-018-0138-z
|9 -- missing cx lookup --
|1 Zhang
|p 336 -
|2 Crossref
|t Nat. Photonics
|v 12
|y 2018
999 C 5 |a 10.1016/j.nima.2016.02.080
|9 -- missing cx lookup --
|1 Kärtner
|p 24 -
|2 Crossref
|t Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip
|v 829
|y 2016
999 C 5 |a 10.1364/OL.448457
|9 -- missing cx lookup --
|1 Olgun
|p 2374 -
|2 Crossref
|t Opt. Lett
|v 47
|y 2022
999 C 5 |a 10.1364/OE.24.025582
|9 -- missing cx lookup --
|1 Ravi
|p 25582 -
|2 Crossref
|t Opt. Express
|v 24
|y 2016
999 C 5 |a 10.1364/OE.503480
|9 -- missing cx lookup --
|1 Matlis
|p 44424 -
|2 Crossref
|t Opt. Express
|v 31
|y 2023
999 C 5 |a 10.1364/OL.413410
|9 -- missing cx lookup --
|1 Tian
|p 741 -
|2 Crossref
|t Opt. Lett.
|v 46
|y 2021
999 C 5 |a 10.1364/OL.29.002046
|9 -- missing cx lookup --
|1 Cronin-Golomb
|p 2046 -
|2 Crossref
|t Opt. Lett.
|v 29
|y 2004
999 C 5 |a 10.1364/OL.41.003806
|9 -- missing cx lookup --
|1 Ravi
|p 3806 -
|2 Crossref
|t Opt. Lett.
|v 41
|y 2016
999 C 5 |a 10.1002/lpor.202000109
|9 -- missing cx lookup --
|1 Ravi
|p 2000109 -
|2 Crossref
|t Laser Photon. Rev
|v 14
|y 2020
999 C 5 |a 10.1364/OL.40.005762
|9 -- missing cx lookup --
|1 Carbajo
|p 5762 -
|2 Crossref
|t Opt. Lett.
|v 40
|y 2015
999 C 5 |a 10.1364/OL.42.002118
|9 -- missing cx lookup --
|1 Ahr
|p 2118 -
|2 Crossref
|t Opt. Lett.
|v 42
|y 2017
999 C 5 |a 10.1038/s41467-019-10657-4
|9 -- missing cx lookup --
|1 Jolly
|p 2591 -
|2 Crossref
|t Nat. Commun
|v 10
|y 2019
999 C 5 |a 10.1038/s42005-020-00421-2
|9 -- missing cx lookup --
|1 Lemery
|p 150 -
|2 Crossref
|t Commun. Phys
|v 3
|y 2020
999 C 5 |a 10.1364/OE.14.002263
|9 -- missing cx lookup --
|1 Vodopyanov
|p 2263 -
|2 Crossref
|t Opt. Express
|v 14
|y 2006
999 C 5 |a 10.1364/JOSAB.25.0000B6
|9 -- missing cx lookup --
|1 Hebling
|p B6 -
|2 Crossref
|t J. Opt. Soc. Am. B
|v 25
|y 2008
999 C 5 |a 10.1364/OE.10.001161
|9 -- missing cx lookup --
|1 Hebling
|p 1161 -
|2 Crossref
|t Opt. Express
|v 10
|y 2002
999 C 5 |a 10.1364/OE.457773
|9 -- missing cx lookup --
|1 Kroh
|p 24186 -
|2 Crossref
|t Opt. Express
|v 30
|y 2022
999 C 5 |a 10.1002/adma.202208947
|9 -- missing cx lookup --
|1 Wu
|p 2208947 -
|2 Crossref
|t Adv. Mater
|v 35
|y 2023
999 C 5 |a 10.1063/1.1582371
|9 -- missing cx lookup --
|1 Ishizuki
|p 4062 -
|2 Crossref
|t Appl. Phys. Lett
|v 82
|y 2003
999 C 5 |a 10.1364/OE.22.019668
|9 -- missing cx lookup --
|1 Ishizuki
|p 19668 -
|2 Crossref
|t Opt. Express
|v 22
|y 2014
999 C 5 |a 10.1364/OE.20.020002
|9 -- missing cx lookup --
|1 Ishizuki
|p 20002 -
|2 Crossref
|t Opt. Express
|v 20
|y 2012
999 C 5 |a 10.1364/OE.475604
|9 -- missing cx lookup --
|1 Mosley
|p 4041 -
|2 Crossref
|t Opt. Express
|v 31
|y 2023
999 C 5 |a 10.1063/1.94946
|9 -- missing cx lookup --
|1 Bryan
|p 847 -
|2 Crossref
|t Appl. Phys. Lett
|v 44
|y 1984
999 C 5 |a 10.1364/OE.26.012536
|9 -- missing cx lookup --
|1 Hemmer
|p 12536 -
|2 Crossref
|t Opt. Express
|v 26
|y 2018
999 C 5 |a 10.1063/1.88989
|9 -- missing cx lookup --
|1 Thompson
|p 113 -
|2 Crossref
|t Appl. Phys. Lett
|v 29
|y 1976
999 C 5 |a 10.1063/1.1929859
|9 -- missing cx lookup --
|1 Pálfalvi
|p 123505 -
|2 Crossref
|t J. Appl. Phys
|v 97
|y 2005
999 C 5 |a 10.1016/0030-4018(93)90602-2
|9 -- missing cx lookup --
|1 Bolt
|p 399 -
|2 Crossref
|t Opt. Commun.
|v 100
|y 1993
999 C 5 |a 10.1364/OL.39.003706
|9 -- missing cx lookup --
|1 Wang
|p 3706 -
|2 Crossref
|t Opt. Lett.
|v 39
|y 2014
999 C 5 |a 10.1364/OE.27.019254
|9 -- missing cx lookup --
|1 Ravi
|p 19254 -
|2 Crossref
|t Opt. Express
|v 27
|y 2019
999 C 5 |a 10.1007/s10762-015-0165-5
|9 -- missing cx lookup --
|1 Unferdorben
|p 1203 -
|2 Crossref
|t J. Infrared, Millimeter, Terahertz Waves
|v 36
|y 2015
999 C 5 |a 10.1364/JOSAB.6.000622
|9 -- missing cx lookup --
|1 Bierlein
|p 622 -
|2 Crossref
|t J. Opt. Soc. Am. B
|v 6
|y 1989


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21