001     610878
005     20250723171810.0
024 7 _ |a 10.1038/s41566-024-01441-y
|2 doi
024 7 _ |a 1749-4885
|2 ISSN
024 7 _ |a 1749-4893
|2 ISSN
024 7 _ |a altmetric:164656707
|2 altmetric
024 7 _ |a 10.3204/PUBDB-2024-04712
|2 datacite_doi
024 7 _ |a WOS:001222564100001
|2 WOS
024 7 _ |a openalex:W4396895094
|2 openalex
037 _ _ |a PUBDB-2024-04712
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ying, Jianwei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a High gradient terahertz-driven ultrafast photogun
260 _ _ |a London [u.a.]
|c 2024
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747828648_1602763
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Terahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)
|0 G:(GEPRIS)194651731
|c 194651731
|x 1
536 _ _ |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 2
542 _ _ |i 2024-05-14
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-05-14
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)AXSIS-20200101
|5 EXP:(DE-H253)AXSIS-20200101
|x 0
700 1 _ |a He, Xie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Su, Dace
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zheng, Lingbin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kroh, Tobias
|0 P:(DE-H253)PIP1028053
|b 4
700 1 _ |a Rohwer, Timm
|0 P:(DE-H253)PIP1007947
|b 5
|u desy
700 1 _ |a Fakhari, Moein
|0 P:(DE-H253)PIP1019055
|b 6
700 1 _ |a Kassier, Günther H.
|0 P:(DE-H253)PIP1016255
|b 7
700 1 _ |a Ma, Jingui
|0 0000-0002-0266-4412
|b 8
700 1 _ |a Yuan, Peng
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Matlis, Nicholas H.
|0 P:(DE-H253)PIP1026174
|b 10
700 1 _ |a Kärtner, Franz X.
|0 P:(DE-H253)PIP1013198
|b 11
|e Corresponding author
700 1 _ |a Zhang, Dongfang
|0 P:(DE-H253)PIP1011712
|b 12
|e Corresponding author
773 1 8 |a 10.1038/s41566-024-01441-y
|b Springer Science and Business Media LLC
|d 2024-05-14
|n 7
|p 758-765
|3 journal-article
|2 Crossref
|t Nature Photonics
|v 18
|y 2024
|x 1749-4885
773 _ _ |a 10.1038/s41566-024-01441-y
|g Vol. 18, no. 7, p. 758 - 765
|0 PERI:(DE-600)2264673-5
|n 7
|p 758-765
|t Nature photonics
|v 18
|y 2024
|x 1749-4885
856 4 _ |u https://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf
856 4 _ |y Published on 2024-07-22. Available in OpenAccess from 2025-01-22.
|u https://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf?subformat=pdfa
856 4 _ |y Published on 2024-07-22. Available in OpenAccess from 2025-01-22.
|x pdfa
|u https://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:610878
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1028053
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1028053
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1007947
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1007947
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1007947
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1019055
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1019055
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1019055
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1016255
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 7
|6 P:(DE-H253)PIP1016255
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1026174
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 10
|6 P:(DE-H253)PIP1026174
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1013198
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 11
|6 P:(DE-H253)PIP1013198
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1013198
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1011712
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 12
|6 P:(DE-H253)PIP1011712
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT PHOTONICS : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHOTONICS : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)FS-CFEL-2-20120731
|k FS-CFEL-2
|l Ultrafast Lasers & X-rays Division
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-2-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1021/acs.chemrev.6b00770
|9 -- missing cx lookup --
|1 AA Ischenko
|p 11066 -
|2 Crossref
|u Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).
|t Chem. Rev.
|v 117
|y 2017
999 C 5 |a 10.1126/science.1250658
|9 -- missing cx lookup --
|1 M Gulde
|p 200 -
|2 Crossref
|u Gulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014).
|t Science
|v 345
|y 2014
999 C 5 |a 10.1103/RevModPhys.94.045004
|9 -- missing cx lookup --
|1 D Filippetto
|p 045004 -
|2 Crossref
|u Filippetto, D. et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev. Mod. Phys. 94, 045004 (2022).
|t Rev. Mod. Phys.
|v 94
|y 2022
999 C 5 |a 10.1146/annurev.physchem.57.032905.104748
|9 -- missing cx lookup --
|1 AH Zewail
|p 65 -
|2 Crossref
|u Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).
|t Annu. Rev. Phys. Chem.
|v 57
|y 2006
999 C 5 |9 -- missing cx lookup --
|a 10.1038/s41377-018-0054-5
|2 Crossref
|u Vogelsang, J., Hergert, G., Wang, D., Gross, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light: Sci. Appl. https://doi.org/10.1038/s41377-018-0054-5 (2018).
999 C 5 |a 10.1021/cr0206667
|9 -- missing cx lookup --
|1 C Bressler
|p 1781 -
|2 Crossref
|u Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).
|t Chem. Rev.
|v 104
|y 2004
999 C 5 |a 10.1103/RevModPhys.81.1229
|9 -- missing cx lookup --
|1 E Esarey
|p 1229 -
|2 Crossref
|u Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).
|t Rev. Mod. Phys.
|v 81
|y 2009
999 C 5 |a 10.1038/nphys966
|9 -- missing cx lookup --
|1 V Malka
|p 447 -
|2 Crossref
|u Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).
|t Nat. Phys.
|v 4
|y 2008
999 C 5 |a 10.1038/s41586-021-03678-x
|9 -- missing cx lookup --
|1 W Wang
|p 516 -
|2 Crossref
|u Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator. Nature 595, 516–520 (2021).
|t Nature
|v 595
|y 2021
999 C 5 |a 10.1038/s41586-021-03812-9
|9 -- missing cx lookup --
|1 R Shiloh
|p 498 -
|2 Crossref
|u Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).
|t Nature
|v 597
|y 2021
999 C 5 |a 10.1126/science.aay5734
|9 -- missing cx lookup --
|1 NV Sapra
|p 79 -
|2 Crossref
|u Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).
|t Science
|v 367
|y 2020
999 C 5 |a 10.1038/s41566-018-0138-z
|9 -- missing cx lookup --
|1 D Zhang
|p 336 -
|2 Crossref
|u Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 12, 336–342 (2018).
|t Nat. Photonics
|v 12
|y 2018
999 C 5 |a 10.1103/PhysRevX.10.011067
|9 -- missing cx lookup --
|1 D Zhang
|p 011067 -
|2 Crossref
|u Zhang, D. et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation. Phys. Rev. 10, 011067 (2020).
|t Phys. Rev.
|v 10
|y 2020
999 C 5 |a 10.1364/OPTICA.6.000872
|9 -- missing cx lookup --
|1 D Zhang
|p 872 -
|2 Crossref
|u Zhang, D. et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica 6, 872–877 (2019).
|t Optica
|v 6
|y 2019
999 C 5 |a 10.1103/PhysRevLett.127.074801
|9 -- missing cx lookup --
|1 H Tang
|p 074801 -
|2 Crossref
|u Tang, H. et al. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. 127, 074801 (2021).
|t Phys. Rev. Lett.
|v 127
|y 2021
999 C 5 |a 10.1038/s41566-020-0674-1
|9 -- missing cx lookup --
|1 MT Hibberd
|p 755 -
|2 Crossref
|u Hibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat. Photonics 14, 755–759 (2020).
|t Nat. Photonics
|v 14
|y 2020
999 C 5 |a 10.1103/PhysRevLett.120.094801
|9 -- missing cx lookup --
|1 E Curry
|p 094801 -
|2 Crossref
|u Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018).
|t Phys. Rev. Lett.
|v 120
|y 2018
999 C 5 |9 -- missing cx lookup --
|a 10.18429/JACoW-IPAC2021-WEPAB158
|2 Crossref
|u Kroh, T. et al. Compact terahertz-powered electron photo-gun. In Proc. 12th International Particle Accelerator Conference 2983–2985 (JACoW, 2021); https://doi.org/10.18429/JACoW-IPAC2021-WEPAB158
999 C 5 |a 10.1063/5.0096685
|9 -- missing cx lookup --
|1 D Zhang
|p 031407 -
|2 Crossref
|u Zhang, D. et al. Long range terahertz driven electron acceleration using phase shifters. Appl. Phys. Rev. 9, 031407 (2022).
|t Appl. Phys. Rev.
|v 9
|y 2022
999 C 5 |a 10.1364/OE.10.001161
|9 -- missing cx lookup --
|1 J Hebling
|p 1161 -
|2 Crossref
|u Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002).
|t Opt. Express
|v 10
|y 2002
999 C 5 |a 10.1364/OE.22.020155
|9 -- missing cx lookup --
|1 JA Fülöp
|p 20155 -
|2 Crossref
|u Fülöp, J. A. et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 22, 20155–20163 (2014).
|t Opt. Express
|v 22
|y 2014
999 C 5 |a 10.1103/PhysRevLett.112.213901
|9 -- missing cx lookup --
|1 C Vicario
|p 213901 -
|2 Crossref
|u Vicario, C., Monoszlai, B. & Hauri, C. P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 112, 213901 (2014).
|t Phys. Rev. Lett.
|v 112
|y 2014
999 C 5 |a 10.1002/lpor.202000295
|9 -- missing cx lookup --
|1 B Zhang
|p 2000295 -
|2 Crossref
|u Zhang, B. et al. 1.4‐mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 15, 2000295 (2021).
|t Laser Photonics Rev.
|v 15
|y 2021
999 C 5 |a 10.1103/PhysRevAccelBeams.19.051302
|9 -- missing cx lookup --
|1 M Dal Forno
|p 051302 -
|2 Crossref
|u Dal Forno, M. et al. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 051302 (2016).
|t Phys. Rev. Accel. Beams
|v 19
|y 2016
999 C 5 |a 10.1103/PhysRevAccelBeams.20.052001
|9 -- missing cx lookup --
|1 X Wu
|p 052001 -
|2 Crossref
|u Wu, X. et al. High-gradient breakdown studies of an X -band compact linear collider prototype structure. Phys. Rev. Accel. Beams 20, 052001 (2017).
|t Phys. Rev. Accel. Beams
|v 20
|y 2017
999 C 5 |a 10.1038/s41467-019-10657-4
|1 SW Jolly
|9 -- missing cx lookup --
|2 Crossref
|u Jolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nat. Commun. 10, 2591 (2019).
|t Nat. Commun.
|v 10
|y 2019
999 C 5 |a 10.34133/2021/9848526
|9 -- missing cx lookup --
|1 D Zhang
|p 1 -
|2 Crossref
|u Zhang, D. et al. THz-enhanced DC ultrafast electron diffractometer. Ultrafast Sci. 2021, 1–7 (2021).
|t Ultrafast Sci.
|v 2021
|y 2021
999 C 5 |a 10.1103/PhysRevLett.124.054801
|9 -- missing cx lookup --
|1 EC Snively
|p 054801 -
|2 Crossref
|u Snively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020).
|t Phys. Rev. Lett.
|v 124
|y 2020
999 C 5 |a 10.1103/PhysRevLett.124.054802
|9 -- missing cx lookup --
|1 L Zhao
|p 054802 -
|2 Crossref
|u Zhao, L. et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett. 124, 054802 (2020).
|t Phys. Rev. Lett.
|v 124
|y 2020
999 C 5 |a 10.1038/nphys2974
|9 -- missing cx lookup --
|1 L Wimmer
|p 432 -
|2 Crossref
|u Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).
|t Nat. Phys.
|v 10
|y 2014
999 C 5 |a 10.1103/PhysRevResearch.3.013137
|9 -- missing cx lookup --
|1 D Matte
|p 013137 -
|2 Crossref
|u Matte, D. et al. Extreme lightwave electron field emission from a nanotip. Phys. Rev. Res. 3, 013137 (2021).
|t Phys. Rev. Res.
|v 3
|y 2021
999 C 5 |a 10.1038/ncomms13405
|1 S Li
|9 -- missing cx lookup --
|2 Crossref
|u Li, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).
|t Nat. Commun.
|v 7
|y 2016
999 C 5 |a 10.1103/PhysRevAccelBeams.19.081302
|9 -- missing cx lookup --
|1 A Fallahi
|p 081302 -
|2 Crossref
|u Fallahi, A., Fakhari, M., Yahaghi, A., Arrieta, M. & Kärtner, F. X. Short electron bunch generation using single-cycle ultrafast electron guns. Phys. Rev. Accel. Beams 19, 081302 (2016).
|t Phys. Rev. Accel. Beams
|v 19
|y 2016
999 C 5 |a 10.1364/OPTICA.3.001209
|9 -- missing cx lookup --
|1 W Ronny Huang
|p 1209 -
|2 Crossref
|u Ronny Huang, W. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016).
|t Optica
|v 3
|y 2016
999 C 5 |a 10.1039/C4FD00204K
|9 -- missing cx lookup --
|1 S Manz
|p 467 -
|2 Crossref
|u Manz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015).
|t Faraday Discuss.
|v 177
|y 2015
999 C 5 |a 10.1126/science.aat0049
|9 -- missing cx lookup --
|1 J Yang
|p 64 -
|2 Crossref
|u Yang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).
|t Science
|v 361
|y 2018
999 C 5 |a 10.1103/PhysRevLett.94.134801
|9 -- missing cx lookup --
|1 Y Zou
|p 134801 -
|2 Crossref
|u Zou, Y., Cui, Y., Reiser, M. & O’Shea, P. G. Observation of the anomalous increase of the longitudinal energy spread in a space-charge-dominated electron beam. Phys. Rev. Lett. 94, 134801 (2005).
|t Phys. Rev. Lett.
|v 94
|y 2005
999 C 5 |a 10.1063/1.5142590
|9 -- missing cx lookup --
|1 SL Lange
|p 070901 -
|2 Crossref
|u Lange, S. L., Noori, N. K., Kristensen, T. M. B., Steenberg, K. & Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 128, 070901 (2020).
|t J. Appl. Phys.
|v 128
|y 2020
999 C 5 |a 10.1016/j.nima.2016.01.065
|9 -- missing cx lookup --
|1 M Hachmann
|p 318 -
|2 Crossref
|u Hachmann, M. & Flöttmann, K. Measurement of ultra low transverse emittance at REGAE. Nucl. Instrum. Methods Phys. Res. A 829, 318–320 (2016).
|t Nucl. Instrum. Methods Phys. Res. A
|v 829
|y 2016
999 C 5 |a 10.1103/PhysRevLett.124.134803
|9 -- missing cx lookup --
|1 F Qi
|p 134803 -
|2 Crossref
|u Qi, F. et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).
|t Phys. Rev. Lett.
|v 124
|y 2020
999 C 5 |a 10.1103/PhysRevLett.118.154802
|9 -- missing cx lookup --
|1 J Maxson
|p 154802 -
|2 Crossref
|u Maxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |a 10.1103/PhysRevLett.105.264801
|9 -- missing cx lookup --
|1 MJ de Loos
|p 264801 -
|2 Crossref
|u de Loos, M. J. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).
|t Phys. Rev. Lett.
|v 105
|y 2010
999 C 5 |a 10.1038/s41566-019-0566-4
|9 -- missing cx lookup --
|1 HW Kim
|p 245 -
|2 Crossref
|u Kim, H. W. et al. Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14, 245–249 (2020).
|t Nat. Photonics
|v 14
|y 2020
999 C 5 |a 10.1103/PhysRevX.8.021061
|9 -- missing cx lookup --
|1 L Zhao
|p 021061 -
|2 Crossref
|u Zhao, L. et al. Terahertz streaking of few-femtosecond relativistic electron beams. Phys. Rev. 8, 021061 (2018).
|t Phys. Rev.
|v 8
|y 2018
999 C 5 |a 10.1103/PhysRevAccelBeams.22.012803
|9 -- missing cx lookup --
|1 RK Li
|p 012803 -
|2 Crossref
|u Li, R. K. et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Phys. Rev. Accel. Beams 22, 012803 (2019).
|t Phys. Rev. Accel. Beams
|v 22
|y 2019
999 C 5 |a 10.1126/science.aae0003
|9 -- missing cx lookup --
|1 C Kealhofer
|p 429 -
|2 Crossref
|u Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).
|t Science
|v 352
|y 2016
999 C 5 |a 10.1038/ncomms6292
|1 M Müller
|9 -- missing cx lookup --
|2 Crossref
|u Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1364/OL.38.000796
|9 -- missing cx lookup --
|1 S-W Huang
|p 796 -
|2 Crossref
|u Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).
|t Opt. Lett.
|v 38
|y 2013
999 C 5 |2 Crossref
|u Computer Simulation Technology. https://www.cst.com
999 C 5 |9 -- missing cx lookup --
|a 10.6084/m9.figshare.25391488
|2 Crossref
|u Ying, J. et al. Dataset for 'High gradient Terahertz-driven ultrafast photogun'. figshare https://doi.org/10.6084/m9.figshare.25391488 (2024).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21