001 | 610878 | ||
005 | 20250723171810.0 | ||
024 | 7 | _ | |a 10.1038/s41566-024-01441-y |2 doi |
024 | 7 | _ | |a 1749-4885 |2 ISSN |
024 | 7 | _ | |a 1749-4893 |2 ISSN |
024 | 7 | _ | |a altmetric:164656707 |2 altmetric |
024 | 7 | _ | |a 10.3204/PUBDB-2024-04712 |2 datacite_doi |
024 | 7 | _ | |a WOS:001222564100001 |2 WOS |
024 | 7 | _ | |a openalex:W4396895094 |2 openalex |
037 | _ | _ | |a PUBDB-2024-04712 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ying, Jianwei |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a High gradient terahertz-driven ultrafast photogun |
260 | _ | _ | |a London [u.a.] |c 2024 |b Nature Publ. Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1747828648_1602763 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Terahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731) |0 G:(GEPRIS)194651731 |c 194651731 |x 1 |
536 | _ | _ | |a AIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 2 |
542 | _ | _ | |i 2024-05-14 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
542 | _ | _ | |i 2024-05-14 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)AXSIS-20200101 |5 EXP:(DE-H253)AXSIS-20200101 |x 0 |
700 | 1 | _ | |a He, Xie |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Su, Dace |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zheng, Lingbin |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kroh, Tobias |0 P:(DE-H253)PIP1028053 |b 4 |
700 | 1 | _ | |a Rohwer, Timm |0 P:(DE-H253)PIP1007947 |b 5 |u desy |
700 | 1 | _ | |a Fakhari, Moein |0 P:(DE-H253)PIP1019055 |b 6 |
700 | 1 | _ | |a Kassier, Günther H. |0 P:(DE-H253)PIP1016255 |b 7 |
700 | 1 | _ | |a Ma, Jingui |0 0000-0002-0266-4412 |b 8 |
700 | 1 | _ | |a Yuan, Peng |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Matlis, Nicholas H. |0 P:(DE-H253)PIP1026174 |b 10 |
700 | 1 | _ | |a Kärtner, Franz X. |0 P:(DE-H253)PIP1013198 |b 11 |e Corresponding author |
700 | 1 | _ | |a Zhang, Dongfang |0 P:(DE-H253)PIP1011712 |b 12 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41566-024-01441-y |b Springer Science and Business Media LLC |d 2024-05-14 |n 7 |p 758-765 |3 journal-article |2 Crossref |t Nature Photonics |v 18 |y 2024 |x 1749-4885 |
773 | _ | _ | |a 10.1038/s41566-024-01441-y |g Vol. 18, no. 7, p. 758 - 765 |0 PERI:(DE-600)2264673-5 |n 7 |p 758-765 |t Nature photonics |v 18 |y 2024 |x 1749-4885 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf |
856 | 4 | _ | |y Published on 2024-07-22. Available in OpenAccess from 2025-01-22. |u https://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2024-07-22. Available in OpenAccess from 2025-01-22. |x pdfa |u https://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:610878 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 4 |6 P:(DE-H253)PIP1028053 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1028053 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1007947 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 5 |6 P:(DE-H253)PIP1007947 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1007947 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1019055 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 6 |6 P:(DE-H253)PIP1019055 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1019055 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1016255 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 7 |6 P:(DE-H253)PIP1016255 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1026174 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 10 |6 P:(DE-H253)PIP1026174 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 11 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1011712 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 12 |6 P:(DE-H253)PIP1011712 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-07 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-07 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b NAT PHOTONICS : 2022 |d 2025-01-07 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-25 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-25 |w ger |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-07 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT PHOTONICS : 2022 |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-07 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-2-20120731 |k FS-CFEL-2 |l Ultrafast Lasers & X-rays Division |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-2-20120731 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1021/acs.chemrev.6b00770 |9 -- missing cx lookup -- |1 AA Ischenko |p 11066 - |2 Crossref |u Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017). |t Chem. Rev. |v 117 |y 2017 |
999 | C | 5 | |a 10.1126/science.1250658 |9 -- missing cx lookup -- |1 M Gulde |p 200 - |2 Crossref |u Gulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014). |t Science |v 345 |y 2014 |
999 | C | 5 | |a 10.1103/RevModPhys.94.045004 |9 -- missing cx lookup -- |1 D Filippetto |p 045004 - |2 Crossref |u Filippetto, D. et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev. Mod. Phys. 94, 045004 (2022). |t Rev. Mod. Phys. |v 94 |y 2022 |
999 | C | 5 | |a 10.1146/annurev.physchem.57.032905.104748 |9 -- missing cx lookup -- |1 AH Zewail |p 65 - |2 Crossref |u Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006). |t Annu. Rev. Phys. Chem. |v 57 |y 2006 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/s41377-018-0054-5 |2 Crossref |u Vogelsang, J., Hergert, G., Wang, D., Gross, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light: Sci. Appl. https://doi.org/10.1038/s41377-018-0054-5 (2018). |
999 | C | 5 | |a 10.1021/cr0206667 |9 -- missing cx lookup -- |1 C Bressler |p 1781 - |2 Crossref |u Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004). |t Chem. Rev. |v 104 |y 2004 |
999 | C | 5 | |a 10.1103/RevModPhys.81.1229 |9 -- missing cx lookup -- |1 E Esarey |p 1229 - |2 Crossref |u Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009). |t Rev. Mod. Phys. |v 81 |y 2009 |
999 | C | 5 | |a 10.1038/nphys966 |9 -- missing cx lookup -- |1 V Malka |p 447 - |2 Crossref |u Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008). |t Nat. Phys. |v 4 |y 2008 |
999 | C | 5 | |a 10.1038/s41586-021-03678-x |9 -- missing cx lookup -- |1 W Wang |p 516 - |2 Crossref |u Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator. Nature 595, 516–520 (2021). |t Nature |v 595 |y 2021 |
999 | C | 5 | |a 10.1038/s41586-021-03812-9 |9 -- missing cx lookup -- |1 R Shiloh |p 498 - |2 Crossref |u Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021). |t Nature |v 597 |y 2021 |
999 | C | 5 | |a 10.1126/science.aay5734 |9 -- missing cx lookup -- |1 NV Sapra |p 79 - |2 Crossref |u Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020). |t Science |v 367 |y 2020 |
999 | C | 5 | |a 10.1038/s41566-018-0138-z |9 -- missing cx lookup -- |1 D Zhang |p 336 - |2 Crossref |u Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 12, 336–342 (2018). |t Nat. Photonics |v 12 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevX.10.011067 |9 -- missing cx lookup -- |1 D Zhang |p 011067 - |2 Crossref |u Zhang, D. et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation. Phys. Rev. 10, 011067 (2020). |t Phys. Rev. |v 10 |y 2020 |
999 | C | 5 | |a 10.1364/OPTICA.6.000872 |9 -- missing cx lookup -- |1 D Zhang |p 872 - |2 Crossref |u Zhang, D. et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica 6, 872–877 (2019). |t Optica |v 6 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.127.074801 |9 -- missing cx lookup -- |1 H Tang |p 074801 - |2 Crossref |u Tang, H. et al. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. 127, 074801 (2021). |t Phys. Rev. Lett. |v 127 |y 2021 |
999 | C | 5 | |a 10.1038/s41566-020-0674-1 |9 -- missing cx lookup -- |1 MT Hibberd |p 755 - |2 Crossref |u Hibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat. Photonics 14, 755–759 (2020). |t Nat. Photonics |v 14 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.120.094801 |9 -- missing cx lookup -- |1 E Curry |p 094801 - |2 Crossref |u Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018). |t Phys. Rev. Lett. |v 120 |y 2018 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.18429/JACoW-IPAC2021-WEPAB158 |2 Crossref |u Kroh, T. et al. Compact terahertz-powered electron photo-gun. In Proc. 12th International Particle Accelerator Conference 2983–2985 (JACoW, 2021); https://doi.org/10.18429/JACoW-IPAC2021-WEPAB158 |
999 | C | 5 | |a 10.1063/5.0096685 |9 -- missing cx lookup -- |1 D Zhang |p 031407 - |2 Crossref |u Zhang, D. et al. Long range terahertz driven electron acceleration using phase shifters. Appl. Phys. Rev. 9, 031407 (2022). |t Appl. Phys. Rev. |v 9 |y 2022 |
999 | C | 5 | |a 10.1364/OE.10.001161 |9 -- missing cx lookup -- |1 J Hebling |p 1161 - |2 Crossref |u Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002). |t Opt. Express |v 10 |y 2002 |
999 | C | 5 | |a 10.1364/OE.22.020155 |9 -- missing cx lookup -- |1 JA Fülöp |p 20155 - |2 Crossref |u Fülöp, J. A. et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 22, 20155–20163 (2014). |t Opt. Express |v 22 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.112.213901 |9 -- missing cx lookup -- |1 C Vicario |p 213901 - |2 Crossref |u Vicario, C., Monoszlai, B. & Hauri, C. P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 112, 213901 (2014). |t Phys. Rev. Lett. |v 112 |y 2014 |
999 | C | 5 | |a 10.1002/lpor.202000295 |9 -- missing cx lookup -- |1 B Zhang |p 2000295 - |2 Crossref |u Zhang, B. et al. 1.4‐mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 15, 2000295 (2021). |t Laser Photonics Rev. |v 15 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.19.051302 |9 -- missing cx lookup -- |1 M Dal Forno |p 051302 - |2 Crossref |u Dal Forno, M. et al. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 051302 (2016). |t Phys. Rev. Accel. Beams |v 19 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.20.052001 |9 -- missing cx lookup -- |1 X Wu |p 052001 - |2 Crossref |u Wu, X. et al. High-gradient breakdown studies of an X -band compact linear collider prototype structure. Phys. Rev. Accel. Beams 20, 052001 (2017). |t Phys. Rev. Accel. Beams |v 20 |y 2017 |
999 | C | 5 | |a 10.1038/s41467-019-10657-4 |1 SW Jolly |9 -- missing cx lookup -- |2 Crossref |u Jolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nat. Commun. 10, 2591 (2019). |t Nat. Commun. |v 10 |y 2019 |
999 | C | 5 | |a 10.34133/2021/9848526 |9 -- missing cx lookup -- |1 D Zhang |p 1 - |2 Crossref |u Zhang, D. et al. THz-enhanced DC ultrafast electron diffractometer. Ultrafast Sci. 2021, 1–7 (2021). |t Ultrafast Sci. |v 2021 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevLett.124.054801 |9 -- missing cx lookup -- |1 EC Snively |p 054801 - |2 Crossref |u Snively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020). |t Phys. Rev. Lett. |v 124 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.124.054802 |9 -- missing cx lookup -- |1 L Zhao |p 054802 - |2 Crossref |u Zhao, L. et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett. 124, 054802 (2020). |t Phys. Rev. Lett. |v 124 |y 2020 |
999 | C | 5 | |a 10.1038/nphys2974 |9 -- missing cx lookup -- |1 L Wimmer |p 432 - |2 Crossref |u Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014). |t Nat. Phys. |v 10 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevResearch.3.013137 |9 -- missing cx lookup -- |1 D Matte |p 013137 - |2 Crossref |u Matte, D. et al. Extreme lightwave electron field emission from a nanotip. Phys. Rev. Res. 3, 013137 (2021). |t Phys. Rev. Res. |v 3 |y 2021 |
999 | C | 5 | |a 10.1038/ncomms13405 |1 S Li |9 -- missing cx lookup -- |2 Crossref |u Li, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016). |t Nat. Commun. |v 7 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.19.081302 |9 -- missing cx lookup -- |1 A Fallahi |p 081302 - |2 Crossref |u Fallahi, A., Fakhari, M., Yahaghi, A., Arrieta, M. & Kärtner, F. X. Short electron bunch generation using single-cycle ultrafast electron guns. Phys. Rev. Accel. Beams 19, 081302 (2016). |t Phys. Rev. Accel. Beams |v 19 |y 2016 |
999 | C | 5 | |a 10.1364/OPTICA.3.001209 |9 -- missing cx lookup -- |1 W Ronny Huang |p 1209 - |2 Crossref |u Ronny Huang, W. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016). |t Optica |v 3 |y 2016 |
999 | C | 5 | |a 10.1039/C4FD00204K |9 -- missing cx lookup -- |1 S Manz |p 467 - |2 Crossref |u Manz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015). |t Faraday Discuss. |v 177 |y 2015 |
999 | C | 5 | |a 10.1126/science.aat0049 |9 -- missing cx lookup -- |1 J Yang |p 64 - |2 Crossref |u Yang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018). |t Science |v 361 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.94.134801 |9 -- missing cx lookup -- |1 Y Zou |p 134801 - |2 Crossref |u Zou, Y., Cui, Y., Reiser, M. & O’Shea, P. G. Observation of the anomalous increase of the longitudinal energy spread in a space-charge-dominated electron beam. Phys. Rev. Lett. 94, 134801 (2005). |t Phys. Rev. Lett. |v 94 |y 2005 |
999 | C | 5 | |a 10.1063/1.5142590 |9 -- missing cx lookup -- |1 SL Lange |p 070901 - |2 Crossref |u Lange, S. L., Noori, N. K., Kristensen, T. M. B., Steenberg, K. & Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 128, 070901 (2020). |t J. Appl. Phys. |v 128 |y 2020 |
999 | C | 5 | |a 10.1016/j.nima.2016.01.065 |9 -- missing cx lookup -- |1 M Hachmann |p 318 - |2 Crossref |u Hachmann, M. & Flöttmann, K. Measurement of ultra low transverse emittance at REGAE. Nucl. Instrum. Methods Phys. Res. A 829, 318–320 (2016). |t Nucl. Instrum. Methods Phys. Res. A |v 829 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.124.134803 |9 -- missing cx lookup -- |1 F Qi |p 134803 - |2 Crossref |u Qi, F. et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020). |t Phys. Rev. Lett. |v 124 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.118.154802 |9 -- missing cx lookup -- |1 J Maxson |p 154802 - |2 Crossref |u Maxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017). |t Phys. Rev. Lett. |v 118 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.105.264801 |9 -- missing cx lookup -- |1 MJ de Loos |p 264801 - |2 Crossref |u de Loos, M. J. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010). |t Phys. Rev. Lett. |v 105 |y 2010 |
999 | C | 5 | |a 10.1038/s41566-019-0566-4 |9 -- missing cx lookup -- |1 HW Kim |p 245 - |2 Crossref |u Kim, H. W. et al. Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14, 245–249 (2020). |t Nat. Photonics |v 14 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevX.8.021061 |9 -- missing cx lookup -- |1 L Zhao |p 021061 - |2 Crossref |u Zhao, L. et al. Terahertz streaking of few-femtosecond relativistic electron beams. Phys. Rev. 8, 021061 (2018). |t Phys. Rev. |v 8 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.22.012803 |9 -- missing cx lookup -- |1 RK Li |p 012803 - |2 Crossref |u Li, R. K. et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Phys. Rev. Accel. Beams 22, 012803 (2019). |t Phys. Rev. Accel. Beams |v 22 |y 2019 |
999 | C | 5 | |a 10.1126/science.aae0003 |9 -- missing cx lookup -- |1 C Kealhofer |p 429 - |2 Crossref |u Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016). |t Science |v 352 |y 2016 |
999 | C | 5 | |a 10.1038/ncomms6292 |1 M Müller |9 -- missing cx lookup -- |2 Crossref |u Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.1364/OL.38.000796 |9 -- missing cx lookup -- |1 S-W Huang |p 796 - |2 Crossref |u Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013). |t Opt. Lett. |v 38 |y 2013 |
999 | C | 5 | |2 Crossref |u Computer Simulation Technology. https://www.cst.com |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.6084/m9.figshare.25391488 |2 Crossref |u Ying, J. et al. Dataset for 'High gradient Terahertz-driven ultrafast photogun'. figshare https://doi.org/10.6084/m9.figshare.25391488 (2024). |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|