000610878 001__ 610878 000610878 005__ 20250723171810.0 000610878 0247_ $$2doi$$a10.1038/s41566-024-01441-y 000610878 0247_ $$2ISSN$$a1749-4885 000610878 0247_ $$2ISSN$$a1749-4893 000610878 0247_ $$2altmetric$$aaltmetric:164656707 000610878 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-04712 000610878 0247_ $$2WOS$$aWOS:001222564100001 000610878 0247_ $$2openalex$$aopenalex:W4396895094 000610878 037__ $$aPUBDB-2024-04712 000610878 041__ $$aEnglish 000610878 082__ $$a530 000610878 1001_ $$0P:(DE-HGF)0$$aYing, Jianwei$$b0 000610878 245__ $$aHigh gradient terahertz-driven ultrafast photogun 000610878 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2024 000610878 3367_ $$2DRIVER$$aarticle 000610878 3367_ $$2DataCite$$aOutput Types/Journal article 000610878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747828648_1602763 000610878 3367_ $$2BibTeX$$aARTICLE 000610878 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000610878 3367_ $$00$$2EndNote$$aJournal Article 000610878 520__ $$aTerahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications. 000610878 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0 000610878 536__ $$0G:(GEPRIS)194651731$$aDFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)$$c194651731$$x1 000610878 536__ $$0G:(GEPRIS)390715994$$aAIM, DFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x2 000610878 542__ $$2Crossref$$i2024-05-14$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining 000610878 542__ $$2Crossref$$i2024-05-14$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining 000610878 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000610878 693__ $$0EXP:(DE-H253)AXSIS-20200101$$1EXP:(DE-H253)SINBAD-20200101$$5EXP:(DE-H253)AXSIS-20200101$$aSINBAD$$eAXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy$$x0 000610878 7001_ $$0P:(DE-HGF)0$$aHe, Xie$$b1 000610878 7001_ $$0P:(DE-HGF)0$$aSu, Dace$$b2 000610878 7001_ $$0P:(DE-HGF)0$$aZheng, Lingbin$$b3 000610878 7001_ $$0P:(DE-H253)PIP1028053$$aKroh, Tobias$$b4 000610878 7001_ $$0P:(DE-H253)PIP1007947$$aRohwer, Timm$$b5$$udesy 000610878 7001_ $$0P:(DE-H253)PIP1019055$$aFakhari, Moein$$b6 000610878 7001_ $$0P:(DE-H253)PIP1016255$$aKassier, Günther H.$$b7 000610878 7001_ $$00000-0002-0266-4412$$aMa, Jingui$$b8 000610878 7001_ $$0P:(DE-HGF)0$$aYuan, Peng$$b9 000610878 7001_ $$0P:(DE-H253)PIP1026174$$aMatlis, Nicholas H.$$b10 000610878 7001_ $$0P:(DE-H253)PIP1013198$$aKärtner, Franz X.$$b11$$eCorresponding author 000610878 7001_ $$0P:(DE-H253)PIP1011712$$aZhang, Dongfang$$b12$$eCorresponding author 000610878 77318 $$2Crossref$$3journal-article$$a10.1038/s41566-024-01441-y$$bSpringer Science and Business Media LLC$$d2024-05-14$$n7$$p758-765$$tNature Photonics$$v18$$x1749-4885$$y2024 000610878 773__ $$0PERI:(DE-600)2264673-5$$a10.1038/s41566-024-01441-y$$gVol. 18, no. 7, p. 758 - 765$$n7$$p758-765$$tNature photonics$$v18$$x1749-4885$$y2024 000610878 8564_ $$uhttps://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf 000610878 8564_ $$uhttps://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf$$yPublished on 2024-07-22. Available in OpenAccess from 2025-01-22. 000610878 8564_ $$uhttps://bib-pubdb1.desy.de/record/610878/files/s41566-024-01441-y.pdf?subformat=pdfa$$xpdfa 000610878 8564_ $$uhttps://bib-pubdb1.desy.de/record/610878/files/NPHOT-2022-06-00861_THz-driven%20fs%20photogun%20submission.pdf?subformat=pdfa$$xpdfa$$yPublished on 2024-07-22. Available in OpenAccess from 2025-01-22. 000610878 909CO $$ooai:bib-pubdb1.desy.de:610878$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1028053$$aCentre for Free-Electron Laser Science$$b4$$kCFEL 000610878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028053$$aExternal Institute$$b4$$kExtern 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007947$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1007947$$aCentre for Free-Electron Laser Science$$b5$$kCFEL 000610878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007947$$aExternal Institute$$b5$$kExtern 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019055$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1019055$$aCentre for Free-Electron Laser Science$$b6$$kCFEL 000610878 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019055$$aExternal Institute$$b6$$kExtern 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1016255$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1016255$$aCentre for Free-Electron Laser Science$$b7$$kCFEL 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026174$$aDeutsches Elektronen-Synchrotron$$b10$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1026174$$aCentre for Free-Electron Laser Science$$b10$$kCFEL 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013198$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013198$$aCentre for Free-Electron Laser Science$$b11$$kCFEL 000610878 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013198$$aEuropean XFEL$$b11$$kXFEL.EU 000610878 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011712$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY 000610878 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1011712$$aCentre for Free-Electron Laser Science$$b12$$kCFEL 000610878 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0 000610878 9141_ $$y2024 000610878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000610878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT PHOTONICS : 2022$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25 000610878 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-25$$wger 000610878 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHOTONICS : 2022$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25 000610878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000610878 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger 000610878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000610878 9201_ $$0I:(DE-H253)FS-CFEL-2-20120731$$kFS-CFEL-2$$lUltrafast Lasers & X-rays Division$$x0 000610878 980__ $$ajournal 000610878 980__ $$aVDB 000610878 980__ $$aUNRESTRICTED 000610878 980__ $$aI:(DE-H253)FS-CFEL-2-20120731 000610878 9801_ $$aFullTexts 000610878 999C5 $$1AA Ischenko$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.6b00770$$p11066 -$$tChem. Rev.$$uIschenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).$$v117$$y2017 000610878 999C5 $$1M Gulde$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1250658$$p200 -$$tScience$$uGulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014).$$v345$$y2014 000610878 999C5 $$1D Filippetto$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.94.045004$$p045004 -$$tRev. Mod. Phys.$$uFilippetto, D. et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev. Mod. Phys. 94, 045004 (2022).$$v94$$y2022 000610878 999C5 $$1AH Zewail$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physchem.57.032905.104748$$p65 -$$tAnnu. Rev. Phys. Chem.$$uZewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).$$v57$$y2006 000610878 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41377-018-0054-5$$uVogelsang, J., Hergert, G., Wang, D., Gross, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light: Sci. Appl. https://doi.org/10.1038/s41377-018-0054-5 (2018). 000610878 999C5 $$1C Bressler$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr0206667$$p1781 -$$tChem. Rev.$$uBressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).$$v104$$y2004 000610878 999C5 $$1E Esarey$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1229$$p1229 -$$tRev. Mod. Phys.$$uEsarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).$$v81$$y2009 000610878 999C5 $$1V Malka$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys966$$p447 -$$tNat. Phys.$$uMalka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).$$v4$$y2008 000610878 999C5 $$1W Wang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03678-x$$p516 -$$tNature$$uWang, W. et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator. Nature 595, 516–520 (2021).$$v595$$y2021 000610878 999C5 $$1R Shiloh$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-03812-9$$p498 -$$tNature$$uShiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).$$v597$$y2021 000610878 999C5 $$1NV Sapra$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aay5734$$p79 -$$tScience$$uSapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).$$v367$$y2020 000610878 999C5 $$1D Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0138-z$$p336 -$$tNat. Photonics$$uZhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 12, 336–342 (2018).$$v12$$y2018 000610878 999C5 $$1D Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.10.011067$$p011067 -$$tPhys. Rev.$$uZhang, D. et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation. Phys. Rev. 10, 011067 (2020).$$v10$$y2020 000610878 999C5 $$1D Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.6.000872$$p872 -$$tOptica$$uZhang, D. et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica 6, 872–877 (2019).$$v6$$y2019 000610878 999C5 $$1H Tang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.127.074801$$p074801 -$$tPhys. Rev. Lett.$$uTang, H. et al. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. 127, 074801 (2021).$$v127$$y2021 000610878 999C5 $$1MT Hibberd$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-020-0674-1$$p755 -$$tNat. Photonics$$uHibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat. Photonics 14, 755–759 (2020).$$v14$$y2020 000610878 999C5 $$1E Curry$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.094801$$p094801 -$$tPhys. Rev. Lett.$$uCurry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018).$$v120$$y2018 000610878 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2021-WEPAB158$$uKroh, T. et al. Compact terahertz-powered electron photo-gun. In Proc. 12th International Particle Accelerator Conference 2983–2985 (JACoW, 2021); https://doi.org/10.18429/JACoW-IPAC2021-WEPAB158 000610878 999C5 $$1D Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0096685$$p031407 -$$tAppl. Phys. Rev.$$uZhang, D. et al. Long range terahertz driven electron acceleration using phase shifters. Appl. Phys. Rev. 9, 031407 (2022).$$v9$$y2022 000610878 999C5 $$1J Hebling$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.10.001161$$p1161 -$$tOpt. Express$$uHebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002).$$v10$$y2002 000610878 999C5 $$1JA Fülöp$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.22.020155$$p20155 -$$tOpt. Express$$uFülöp, J. A. et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 22, 20155–20163 (2014).$$v22$$y2014 000610878 999C5 $$1C Vicario$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.213901$$p213901 -$$tPhys. Rev. Lett.$$uVicario, C., Monoszlai, B. & Hauri, C. P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 112, 213901 (2014).$$v112$$y2014 000610878 999C5 $$1B Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1002/lpor.202000295$$p2000295 -$$tLaser Photonics Rev.$$uZhang, B. et al. 1.4‐mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 15, 2000295 (2021).$$v15$$y2021 000610878 999C5 $$1M Dal Forno$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.19.051302$$p051302 -$$tPhys. Rev. Accel. Beams$$uDal Forno, M. et al. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 051302 (2016).$$v19$$y2016 000610878 999C5 $$1X Wu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.20.052001$$p052001 -$$tPhys. Rev. Accel. Beams$$uWu, X. et al. High-gradient breakdown studies of an X -band compact linear collider prototype structure. Phys. Rev. Accel. Beams 20, 052001 (2017).$$v20$$y2017 000610878 999C5 $$1SW Jolly$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-10657-4$$tNat. Commun.$$uJolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nat. Commun. 10, 2591 (2019).$$v10$$y2019 000610878 999C5 $$1D Zhang$$2Crossref$$9-- missing cx lookup --$$a10.34133/2021/9848526$$p1 -$$tUltrafast Sci.$$uZhang, D. et al. THz-enhanced DC ultrafast electron diffractometer. Ultrafast Sci. 2021, 1–7 (2021).$$v2021$$y2021 000610878 999C5 $$1EC Snively$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.054801$$p054801 -$$tPhys. Rev. Lett.$$uSnively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020).$$v124$$y2020 000610878 999C5 $$1L Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.054802$$p054802 -$$tPhys. Rev. Lett.$$uZhao, L. et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett. 124, 054802 (2020).$$v124$$y2020 000610878 999C5 $$1L Wimmer$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2974$$p432 -$$tNat. Phys.$$uWimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).$$v10$$y2014 000610878 999C5 $$1D Matte$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.3.013137$$p013137 -$$tPhys. Rev. Res.$$uMatte, D. et al. Extreme lightwave electron field emission from a nanotip. Phys. Rev. Res. 3, 013137 (2021).$$v3$$y2021 000610878 999C5 $$1S Li$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms13405$$tNat. Commun.$$uLi, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).$$v7$$y2016 000610878 999C5 $$1A Fallahi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.19.081302$$p081302 -$$tPhys. Rev. Accel. Beams$$uFallahi, A., Fakhari, M., Yahaghi, A., Arrieta, M. & Kärtner, F. X. Short electron bunch generation using single-cycle ultrafast electron guns. Phys. Rev. Accel. Beams 19, 081302 (2016).$$v19$$y2016 000610878 999C5 $$1W Ronny Huang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.3.001209$$p1209 -$$tOptica$$uRonny Huang, W. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016).$$v3$$y2016 000610878 999C5 $$1S Manz$$2Crossref$$9-- missing cx lookup --$$a10.1039/C4FD00204K$$p467 -$$tFaraday Discuss.$$uManz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015).$$v177$$y2015 000610878 999C5 $$1J Yang$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aat0049$$p64 -$$tScience$$uYang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).$$v361$$y2018 000610878 999C5 $$1Y Zou$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.134801$$p134801 -$$tPhys. Rev. Lett.$$uZou, Y., Cui, Y., Reiser, M. & O’Shea, P. G. Observation of the anomalous increase of the longitudinal energy spread in a space-charge-dominated electron beam. Phys. Rev. Lett. 94, 134801 (2005).$$v94$$y2005 000610878 999C5 $$1SL Lange$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5142590$$p070901 -$$tJ. Appl. Phys.$$uLange, S. L., Noori, N. K., Kristensen, T. M. B., Steenberg, K. & Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 128, 070901 (2020).$$v128$$y2020 000610878 999C5 $$1M Hachmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2016.01.065$$p318 -$$tNucl. Instrum. Methods Phys. Res. A$$uHachmann, M. & Flöttmann, K. Measurement of ultra low transverse emittance at REGAE. Nucl. Instrum. Methods Phys. Res. A 829, 318–320 (2016).$$v829$$y2016 000610878 999C5 $$1F Qi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.134803$$p134803 -$$tPhys. Rev. Lett.$$uQi, F. et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).$$v124$$y2020 000610878 999C5 $$1J Maxson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.154802$$p154802 -$$tPhys. Rev. Lett.$$uMaxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).$$v118$$y2017 000610878 999C5 $$1MJ de Loos$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.264801$$p264801 -$$tPhys. Rev. Lett.$$ude Loos, M. J. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).$$v105$$y2010 000610878 999C5 $$1HW Kim$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-019-0566-4$$p245 -$$tNat. Photonics$$uKim, H. W. et al. Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14, 245–249 (2020).$$v14$$y2020 000610878 999C5 $$1L Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.8.021061$$p021061 -$$tPhys. Rev.$$uZhao, L. et al. Terahertz streaking of few-femtosecond relativistic electron beams. Phys. Rev. 8, 021061 (2018).$$v8$$y2018 000610878 999C5 $$1RK Li$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.22.012803$$p012803 -$$tPhys. Rev. Accel. Beams$$uLi, R. K. et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Phys. Rev. Accel. Beams 22, 012803 (2019).$$v22$$y2019 000610878 999C5 $$1C Kealhofer$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aae0003$$p429 -$$tScience$$uKealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).$$v352$$y2016 000610878 999C5 $$1M Müller$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6292$$tNat. Commun.$$uMüller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).$$v5$$y2014 000610878 999C5 $$1S-W Huang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.38.000796$$p796 -$$tOpt. Lett.$$uHuang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).$$v38$$y2013 000610878 999C5 $$2Crossref$$uComputer Simulation Technology. https://www.cst.com 000610878 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.6084/m9.figshare.25391488$$uYing, J. et al. Dataset for 'High gradient Terahertz-driven ultrafast photogun'. figshare https://doi.org/10.6084/m9.figshare.25391488 (2024).