TY  - EJOUR
AU  - Shen, Zhou
AU  - Awel, Salah
AU  - Barty, Anton
AU  - Bean, Richard
AU  - Bielecki, Johan
AU  - Bergemann, Martin
AU  - Daurer, Benedikt J.
AU  - Ekeberg, Tomas
AU  - Estillore, Armando D.
AU  - Fangohr, Hans
AU  - Giewekemeyer, Klaus
AU  - Hunter, Mark S.
AU  - Karnevskiy, Mikhail
AU  - Kirian, Richard A.
AU  - Kirkwood, Henry
AU  - Kim, Yoonhee
AU  - Koliyadu, Jayanath
AU  - Lange, Holger
AU  - Letrun, Romain
AU  - Lübke, Jannik
AU  - Mall, Abhishek
AU  - Michelat, Thomas
AU  - Morgan, Andrew J.
AU  - Roth, Nils
AU  - Samanta, Amit K.
AU  - Sato, Tokushi
AU  - Sikorski, Marcin
AU  - Schulz, Florian
AU  - Vagovic, Patrik
AU  - Wollweber, Tamme
AU  - Worbs, Lena
AU  - Xavier, Paul Lourdu
AU  - Maia, Filipe R. N. C.
AU  - Horke, Daniel A.
AU  - Küpper, Jochen
AU  - Mancuso, Adrian P.
AU  - Chapman, Henry N.
AU  - Ayyer, Kartik
AU  - Loh, N. Duane
TI  - Resolving non-equilibrium shape variations amongst millions of gold nanoparticles
IS  - arXiv:2401.04896
M1  - PUBDB-2024-04693
M1  - arXiv:2401.04896
PY  - 2024
AB  - Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with x-ray free-electron lasers (XFELs) creates unprecedented opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 10<sup>5</sup> structural models and 10<sup>6</sup> XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the non-equilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable `shape envelope' amongst nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.
LB  - PUB:(DE-HGF)25
DO  - DOI:10.3204/PUBDB-2024-04693
UR  - https://bib-pubdb1.desy.de/record/610716
ER  -