001     610668
005     20250804160226.0
024 7 _ |a 10.1038/s42005-024-01852-x
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-04674
|2 datacite_doi
024 7 _ |a altmetric:170167540
|2 altmetric
024 7 _ |a WOS:001351613500001
|2 WOS
024 7 _ |a openalex:W4404143566
|2 openalex
037 _ _ |a PUBDB-2024-04674
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Budewig, Laura
|0 P:(DE-H253)PIP1092482
|b 0
245 _ _ |a Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754055895_3349143
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)
|0 G:(DE-HGF)2019_IVF-HIDSS-0002
|c 2019_IVF-HIDSS-0002
|x 1
542 _ _ |i 2024-11-07
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-11-07
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Son, Sang-Kil
|0 P:(DE-H253)PIP1012452
|b 1
700 1 _ |a Santra, Robin
|0 P:(DE-H253)PIP1012203
|b 2
|e Corresponding author
773 1 8 |a 10.1038/s42005-024-01852-x
|b Springer Science and Business Media LLC
|d 2024-11-07
|n 1
|p 363
|3 journal-article
|2 Crossref
|t Communications Physics
|v 7
|y 2024
|x 2399-3650
773 _ _ |a 10.1038/s42005-024-01852-x
|g Vol. 7, no. 1, p. 363
|0 PERI:(DE-600)2921913-9
|n 1
|p 363
|t Communications Physics
|v 7
|y 2024
|x 2399-3650
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/s42005-024-01852-x.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/610668/files/s42005-024-01852-x.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:610668
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1092482
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1092482
910 1 _ |a Department of Physics, University of Hamburg,
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1092482
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1012452
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1012452
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1012452
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1012203
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1012203
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1012203
910 1 _ |a Department of Physics, University of Hamburg,
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1012203
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:49Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)CFEL-DESYT-20160930
|k CFEL-DESYT
|l FS-CFEL-3
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-3-20120731
|k FS-CFEL-3
|l CFEL-Theory
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CFEL-DESYT-20160930
980 _ _ |a I:(DE-H253)FS-CFEL-3-20120731
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nphoton.2010.176
|9 -- missing cx lookup --
|1 P Emma
|p 641 -
|2 Crossref
|u Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |a 10.1038/s41566-020-0607-z
|9 -- missing cx lookup --
|1 W Decking
|p 391 -
|2 Crossref
|u Decking, W. et al. A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).
|t Nat. Photon.
|v 14
|y 2020
999 C 5 |a 10.1038/s41566-017-0029-8
|9 -- missing cx lookup --
|1 H-S Kang
|p 708 -
|2 Crossref
|u Kang, H.-S. et al. Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photon. 11, 708–713 (2017).
|t Nat. Photon.
|v 11
|y 2017
999 C 5 |a 10.1038/nphoton.2012.141
|9 -- missing cx lookup --
|1 T Ishikawa
|p 540 -
|2 Crossref
|u Ishikawa, T. et al. A compact x-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |a 10.1038/s41566-020-00712-8
|9 -- missing cx lookup --
|1 E Prat
|p 748 -
|2 Crossref
|u Prat, E. et al. A compact and cost-effective hard x-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–756 (2020).
|t Nat. Photon.
|v 14
|y 2020
999 C 5 |a 10.1103/RevModPhys.88.015006
|9 -- missing cx lookup --
|1 C Pellegrini
|p 015006 -
|2 Crossref
|u Pellegrini, C., Marinelli, A. & Reiche, S. The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).
|t Rev. Mod. Phys.
|v 88
|y 2016
999 C 5 |a 10.1103/PhysRevResearch.4.013220
|9 -- missing cx lookup --
|1 KS Schulze
|p 013220 -
|2 Crossref
|u Schulze, K. S. et al. Towards perfectly linearly polarized x-rays. Phys. Rev. Res. 4, 013220 (2022).
|t Phys. Rev. Res.
|v 4
|y 2022
999 C 5 |1 E Allaria
|y 2014
|2 Crossref
|u Allaria, E. et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 041040 (2014).
999 C 5 |9 -- missing cx lookup --
|a 10.1007/978-3-319-14394-1_25
|2 Crossref
|u Santra, R. and Young, L. Interaction of intense x-ray beams with atoms, in Synchrotron Light Sources and Free-Electron Lasers, edited by Jaeschke, E. J., Khan, S., Schneider, J. R., and Hastings, J. B. (Springer International Publishing, Switzerland, 2016), pp. 1233–1260. https://doi.org/10.1007/978-3-319-14394-1_25.
999 C 5 |a 10.1038/nature09177
|9 -- missing cx lookup --
|1 L Young
|p 56 -
|2 Crossref
|u Young, L. et al. Femtosecond electronic response of atoms to ultra-intense x-rays. Nature 466, 56–61 (2010).
|t Nature
|v 466
|y 2010
999 C 5 |a 10.1103/PhysRevLett.110.173005
|9 -- missing cx lookup --
|1 H Fukuzawa
|p 173005 -
|2 Crossref
|u Fukuzawa, H. et al. Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. Phys. Rev. Lett. 110, 173005 (2013).
|t Phys. Rev. Lett.
|v 110
|y 2013
999 C 5 |a 10.1103/PhysRevA.85.063415
|9 -- missing cx lookup --
|1 S-K Son
|p 063415 -
|2 Crossref
|u Son, S.-K. & Santra, R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A 85, 063415 (2012).
|t Phys. Rev. A
|v 85
|y 2012
999 C 5 |a 10.1038/s41467-018-06745-6
|1 B Rudek
|9 -- missing cx lookup --
|2 Crossref
|u Rudek, B. et al. Relativistic and resonant effects in the ionization of heavy atoms by ultra-intense hard x-rays. Nat. Commun. 9, 4200 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1038/nphoton.2012.261
|9 -- missing cx lookup --
|1 B Rudek
|p 858 -
|2 Crossref
|u Rudek, B. et al. Ultra-efficient ionization of heavy atoms by intense x-ray free-electron laser pulses. Nat. Photon. 6, 858–865 (2012).
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |a 10.1088/0953-4075/46/16/164024
|9 -- missing cx lookup --
|1 K Motomura
|p 164024 -
|2 Crossref
|u Motomura, K. et al. Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA. J. Phys. B: Mol. Opt. Phys. 46, 164024 (2013).
|t J. Phys. B: Mol. Opt. Phys.
|v 46
|y 2013
999 C 5 |a 10.1103/PhysRevE.86.051911
|9 -- missing cx lookup --
|1 U Lorenz
|p 051911 -
|2 Crossref
|u Lorenz, U., Kabachnik, N. M., Weckert, E. & Vartanyants, I. A. Impact of ultrafast electronic damage in single-particle x-ray imaging experiments. Phys. Rev. E 86, 051911 (2012).
|t Phys. Rev. E
|v 86
|y 2012
999 C 5 |a 10.1038/nphys1859
|9 -- missing cx lookup --
|1 HM Quiney
|p 142 -
|2 Crossref
|u Quiney, H. M. & Nugent, K. A. Biomolecular imaging and electronic damage using x-ray free-electron lasers. Nat. Phys. 7, 142–146 (2011).
|t Nat. Phys.
|v 7
|y 2011
999 C 5 |a 10.1107/S2059798319000317
|9 -- missing cx lookup --
|1 K Nass
|p 211 -
|2 Crossref
|u Nass, K. Radiation damage in protein crystallography at x-ray free-electron lasers. Acta Cryst. D. 75, 211–218 (2019).
|t Acta Cryst. D.
|v 75
|y 2019
999 C 5 |a 10.1038/35021099
|9 -- missing cx lookup --
|1 R Neutze
|p 752 -
|2 Crossref
|u Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond x-ray pulses. Nature 406, 752–757 (2000).
|t Nature
|v 406
|y 2000
999 C 5 |a 10.1103/PhysRevA.83.033402
|9 -- missing cx lookup --
|1 S-K Son
|p 033402 -
|2 Crossref
|u Son, S.-K., Young, L. & Santra, R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83, 033402 (2011).
|t Phys. Rev. A
|v 83
|y 2011
999 C 5 |a 10.1107/S2052252517005760
|9 -- missing cx lookup --
|1 JCH Spence
|p 322 -
|2 Crossref
|u Spence, J. C. H. XFELs for structure and dynamics in biology. IUCrJ 4, 322–339 (2017).
|t IUCrJ
|v 4
|y 2017
999 C 5 |a 10.1016/j.sbi.2012.07.015
|9 -- missing cx lookup --
|1 I Schlichting
|p 613 -
|2 Crossref
|u Schlichting, I. & Miao, J. Emerging opportunities in structural biology with x-ray free-electron lasers. Curr. Opin. Struct. Biol. 22, 613–626 (2012).
|t Curr. Opin. Struct. Biol.
|v 22
|y 2012
999 C 5 |a 10.1038/s42005-020-0362-y
|9 -- missing cx lookup --
|1 E Sobolev
|p 97 -
|2 Crossref
|u Sobolev, E. et al. Megahertz single-particle imaging at the European XFEL. Commun. Phys. 3, 97 (2020).
|t Commun. Phys.
|v 3
|y 2020
999 C 5 |a 10.1038/nature09748
|9 -- missing cx lookup --
|1 MM Seibert
|p 78 -
|2 Crossref
|u Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an x-ray laser. Nature 470, 78–81 (2011).
|t Nature
|v 470
|y 2011
999 C 5 |a 10.1038/nature09750
|9 -- missing cx lookup --
|1 HN Chapman
|p 73 -
|2 Crossref
|u Chapman, H. N. et al. Femtosecond x-ray protein nanocrystallography. Nature 470, 73–77 (2011).
|t Nature
|v 470
|y 2011
999 C 5 |a 10.2174/0929866523666160120152937
|9 -- missing cx lookup --
|1 J Coe
|p 255 -
|2 Crossref
|u Coe, J. & Fromme, P. Serial femtosecond crystallography opens new avenues for structural biology. Protein Pept. Lett. 23, 255–272 (2016).
|t Protein Pept. Lett.
|v 23
|y 2016
999 C 5 |a 10.1107/S2052252515014049
|9 -- missing cx lookup --
|1 L Galli
|p 627 -
|2 Crossref
|u Galli, L. et al. Towards phasing using high x-ray intensity. IUCrJ 2, 627–634 (2015).
|t IUCrJ
|v 2
|y 2015
999 C 5 |a 10.1038/s41467-020-15610-4
|1 K Nass
|9 -- missing cx lookup --
|2 Crossref
|u Nass, K. et al. Structural dynamics in proteins induced by and probed with x-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1146/annurev-biochem-013118-110744
|9 -- missing cx lookup --
|1 HN Chapman
|p 35 -
|2 Crossref
|u Chapman, H. N. X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu. Rev. Biochem. 88, 35–58 (2019).
|t Annu. Rev. Biochem.
|v 88
|y 2019
999 C 5 |a 10.1103/PhysRevA.86.061401
|9 -- missing cx lookup --
|1 W Xiang
|p 061401(R) -
|2 Crossref
|u Xiang, W., Gao, C., Fu, Y., Zeng, J. & Yuan, J. Inner-shell resonant absorption effects on evolution dynamics of the charge state distribution in a neon atom interacting with ultraintense x-ray pulses. Phys. Rev. A 86, 061401(R) (2012).
|t Phys. Rev. A
|v 86
|y 2012
999 C 5 |a 10.1038/s41467-023-41505-1
|1 A Rörig
|9 -- missing cx lookup --
|2 Crossref
|u Rörig, A. et al. Multiple-core-hole resonance spectroscopy with ultraintense x-ray pulses. Nat. Commun. 14, 5738 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1103/PhysRevA.95.043412
|9 -- missing cx lookup --
|1 K Toyota
|p 043412 -
|2 Crossref
|u Toyota, K., Son, S.-K. & Santra, R. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms. Phys. Rev. A 95, 043412 (2017).
|t Phys. Rev. A
|v 95
|y 2017
999 C 5 |a 10.1088/1361-6455/aaa39a
|9 -- missing cx lookup --
|1 C Buth
|p 055602 -
|2 Crossref
|u Buth, C. et al. Neon in ultrashort and intense x-rays from free electron lasers. J. Phys. B: Mol. Opt. Phys. 51, 055602 (2018).
|t J. Phys. B: Mol. Opt. Phys.
|v 51
|y 2018
999 C 5 |a 10.1103/PhysRevLett.106.083002
|9 -- missing cx lookup --
|1 G Doumy
|p 083002 -
|2 Crossref
|u Doumy, G. et al. Nonlinear atomic response to intense ultrashort x rays. Phys. Rev. Lett. 106, 083002 (2011).
|t Phys. Rev. Lett.
|v 106
|y 2011
999 C 5 |a 10.1103/PhysRevResearch.2.023053
|9 -- missing cx lookup --
|1 S-K Son
|p 023053 -
|2 Crossref
|u Son, S.-K., Boll, R. & Santra, R. Breakdown of frustrated absorption in x-ray sequential multiphoton ionization. Phys. Rev. Res. 2, 023053 (2020).
|t Phys. Rev. Res.
|v 2
|y 2020
999 C 5 |a 10.1103/PhysRevA.107.013102
|9 -- missing cx lookup --
|1 L Budewig
|p 013102 -
|2 Crossref
|u Budewig, L., Son, S.-K. & Santra, R. State-resolved ionization dynamics of a neon atom induced by x-ray free-electron-laser pulses. Phys. Rev. A 107, 013102 (2023).
|t Phys. Rev. A
|v 107
|y 2023
999 C 5 |1 T Mazza
|y 2020
|2 Crossref
|u Mazza, T. et al. Mapping resonance structures in transient core-ionized atoms. Phys. Rev. X 10, 041056 (2020).
999 C 5 |a 10.1103/PhysRevA.105.033111
|9 -- missing cx lookup --
|1 L Budewig
|p 033111 -
|2 Crossref
|u Budewig, L., Son, S.-K. & Santra, R. Theoretical investigation of orbital alignment of x-ray-ionized atoms in exotic electronic configurations. Phys. Rev. A 105, 033111 (2022).
|t Phys. Rev. A
|v 105
|y 2022
999 C 5 |a 10.1103/PhysRevA.107.013111
|9 -- missing cx lookup --
|1 EV Gryzlova
|p 013111 -
|2 Crossref
|u Gryzlova, E. V., Grum-Grzhimailo, A. N., Kiselev, M. D. & Popova, M. M. Evolution of the ionic polarization in multiple sequential ionization: general equations and an illustrative example. Phys. Rev. A 107, 013111 (2023).
|t Phys. Rev. A
|v 107
|y 2023
999 C 5 |a 10.1016/S0368-2048(03)00034-3
|9 -- missing cx lookup --
|1 U Kleiman
|p 29 -
|2 Crossref
|u Kleiman, U. & Lohmann, B. Photoionization of closed-shell atoms: Hartree–fock calculations of orientation and alignment. J. Electron Spectrosc. Relat. Phenom. 131-132, 29–50 (2003).
|t J. Electron Spectrosc. Relat. Phenom.
|v 131-132
|y 2003
999 C 5 |a 10.1103/PhysRevA.16.255
|9 -- missing cx lookup --
|1 CD Caldwell
|p 255 -
|2 Crossref
|u Caldwell, C. D. & Zare, R. N. Alignment of Cd atoms by photoionization. Phys. Rev. A 16, 255–262 (1977).
|t Phys. Rev. A
|v 16
|y 1977
999 C 5 |a 10.1103/PhysRevA.24.2257
|9 -- missing cx lookup --
|1 SH Southworth
|p 2257 -
|2 Crossref
|u Southworth, S. H. et al. Photoelectron and Auger electron asymmetries: Alignment of $${{{\rm{Xe}}}}^{+2}{D}_{\frac{5}{2}}$$ by photoionization. Phys. Rev. A 24, 2257–2260 (1981).
|t Phys. Rev. A
|v 24
|y 1981
999 C 5 |a 10.1088/0953-4075/36/10/315
|9 -- missing cx lookup --
|1 H Küst
|p 2073 -
|2 Crossref
|u Küst, H., Kleiman, U. & Mehlhorn, W. Alignment after Xe L3 photoionization by synchrotron radiation. J. Phys. B: Mol. Opt. Phys. 36, 2073–2082 (2003).
|t J. Phys. B: Mol. Opt. Phys.
|v 36
|y 2003
999 C 5 |a 10.1016/S0368-2048(98)00226-6
|9 -- missing cx lookup --
|1 U Becker
|p 105 -
|2 Crossref
|u Becker, U. Complete photoionisation experiments. J. Electron Spectrosc. Relat. Phenom. 96, 105–115 (1998).
|t J. Electron Spectrosc. Relat. Phenom.
|v 96
|y 1998
999 C 5 |a 10.1088/0034-4885/55/9/003
|9 -- missing cx lookup --
|1 V Schmidt
|p 1483 -
|2 Crossref
|u Schmidt, V. Photoionization of atoms using synchrotron radiation. Rep. Prog. Phys. 55, 1483–1659 (1992).
|t Rep. Prog. Phys.
|v 55
|y 1992
999 C 5 |a 10.1103/PhysRevLett.29.7
|9 -- missing cx lookup --
|1 S Flügge
|p 7 -
|2 Crossref
|u Flügge, S., Mehlhorn, W. & Schmidt, V. Angular distribution of Auger electrons following photoionization. Phys. Rev. Lett. 29, 7–9 (1972).
|t Phys. Rev. Lett.
|v 29
|y 1972
999 C 5 |a 10.1088/0022-3700/11/10/012
|9 -- missing cx lookup --
|1 EG Berezhko
|p 1749 -
|2 Crossref
|u Berezhko, E. G., Kabachnik, N. M. & Rostovsky, V. S. Potential-barrier effects in inner-shell photoionisation and their influence on the anisotropy of x-rays and Auger electrons. J. Phys. B: Mol. Opt. Phys. 11, 1749 (1978).
|t J. Phys. B: Mol. Opt. Phys.
|v 11
|y 1978
999 C 5 |a 10.1016/0375-9601(71)90303-3
|9 -- missing cx lookup --
|1 B Cleff
|p 3 -
|2 Crossref
|u Cleff, B. & Mehlhorn, W. On the angular distribution of Auger electrons. Phys. Lett. A 37, 3–4 (1971).
|t Phys. Lett. A
|v 37
|y 1971
999 C 5 |a 10.1088/0022-3700/7/5/010
|9 -- missing cx lookup --
|1 B Cleff
|p 605 -
|2 Crossref
|u Cleff, B. & Mehlhorn, W. Angular distribution of L3M2,3M2,3 (1S0) Auger electrons of argon. J. Phys. B: Mol. Opt. Phys. 7, 605–611 (1974).
|t J. Phys. B: Mol. Opt. Phys.
|v 7
|y 1974
999 C 5 |a 10.1088/0022-3700/10/12/025
|9 -- missing cx lookup --
|1 EG Berezhko
|p 2467 -
|2 Crossref
|u Berezhko, E. G. & Kabachnik, N. M. Theoretical study of inner-shell alignment of atoms in electron impact ionisation: angular distribution and polarisation of x-rays and Auger electrons. J. Phys. B: Mol. Opt. Phys. 10, 2467–2477 (1977).
|t J. Phys. B: Mol. Opt. Phys.
|v 10
|y 1977
999 C 5 |a 10.1088/0953-4075/30/20/010
|9 -- missing cx lookup --
|1 H Schmoranzer
|p 4463 -
|2 Crossref
|u Schmoranzer, H. et al. Angular distribution of the fluorescence radiation of Kr II satellite states. J. Phys. B: Mol. Opt. Phys. 30, 4463–4480 (1997).
|t J. Phys. B: Mol. Opt. Phys.
|v 30
|y 1997
999 C 5 |a 10.1103/PhysRevA.2.1708
|9 -- missing cx lookup --
|1 J Hrdý
|p 1708 -
|2 Crossref
|u Hrdý, J., Henins, A. & Bearden, J. A. Polarization of the $${L}_{{\alpha }_{1}}$$ x rays of mercury. Phys. Rev. A 2, 1708–1711 (1970).
|t Phys. Rev. A
|v 2
|y 1970
999 C 5 |a 10.1007/BF01426233
|9 -- missing cx lookup --
|1 W Kronast
|p 285 -
|2 Crossref
|u Kronast, W., Huster, R. & Mehlhorn, W. Alignment of atoms following photoionisation. Z. Phys. D. 2, 285–296 (1986).
|t Z. Phys. D.
|v 2
|y 1986
999 C 5 |a 10.1080/09500340.2015.1047805
|9 -- missing cx lookup --
|1 SF Alexei
|p 334 -
|2 Crossref
|u Alexei, S. F., Grum-Grzhimailo, N., Gryzlova, E. V. & Kabachnik, N. M. Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers. J. Mod. Opt. 63, 334–357 (2016).
|t J. Mod. Opt.
|v 63
|y 2016
999 C 5 |a 10.1063/1.1668742
|9 -- missing cx lookup --
|1 J Cooper
|p 942 -
|2 Crossref
|u Cooper, J. & Zare, R. N. Angular distribution of photoelectrons. J. Chem. Phys. 48, 942–943 (1968).
|t J. Chem. Phys.
|v 48
|y 1968
999 C 5 |a 10.1103/PhysRevA.2.2170
|9 -- missing cx lookup --
|1 ST Manson
|p 2170 -
|2 Crossref
|u Manson, S. T. & Cooper, J. W. Angular distribution of photoelectrons: Outer shells of noble gases. Phys. Rev. A 2, 2170–2171 (1970).
|t Phys. Rev. A
|v 2
|y 1970
999 C 5 |9 -- missing cx lookup --
|a 10.1007/978-3-031-08027-2
|2 Crossref
|u Davis, V. T. Introduction to Photoelectron Angular Distributions (Springer, Switzerland, 2022).
999 C 5 |a 10.1103/PhysRevLett.76.4496
|9 -- missing cx lookup --
|1 S Al Moussalami
|p 4496 -
|2 Crossref
|u Al Moussalami, S. et al. First angle-resolved photoelectron measurements following inner-shell resonant excitation in a singly charged ion. Phys. Rev. Lett. 76, 4496–4499 (1996).
|t Phys. Rev. Lett.
|v 76
|y 1996
999 C 5 |a 10.1016/S0168-583X(98)00561-8
|9 -- missing cx lookup --
|1 B Rouvellou
|p 287 -
|2 Crossref
|u Rouvellou, B. et al. Photoelectron spectroscopy experiments on singly charged positive-ions using synchrotron radiation. Nucl. Instrum. Methods Phys. Res., B 134, 287–303 (1998).
|t Nucl. Instrum. Methods Phys. Res., B
|v 134
|y 1998
999 C 5 |a 10.1103/PhysRevA.83.031401
|9 -- missing cx lookup --
|1 A Rouzée
|p 031401 -
|2 Crossref
|u Rouzée, A. et al. Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy. Phys. Rev. A 83, 031401 (2011).
|t Phys. Rev. A
|v 83
|y 2011
999 C 5 |a 10.1080/09500340.2015.1047422
|9 -- missing cx lookup --
|1 M Braune
|p 324 -
|2 Crossref
|u Braune, M. et al. Electron angular distributions of noble gases in sequential two-photon double ionization. J. Mod. Opt. 63, 324–333 (2016).
|t J. Mod. Opt.
|v 63
|y 2016
999 C 5 |a 10.1103/PhysRevLett.97.083601
|9 -- missing cx lookup --
|1 L Young
|p 083601 -
|2 Crossref
|u Young, L. et al. X-ray microprobe of orbital alignment in strong-field ionized atoms. Phys. Rev. Lett. 97, 083601 (2006).
|t Phys. Rev. Lett.
|v 97
|y 2006
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1049-250X(08)00014-1
|2 Crossref
|u Santra, R. et al. Strong-field control of x-ray processes, in Advances in Atomic, Molecular, and Optical Physics, edited by Arimondo, E., Berman, P. R., and Lin, C. C. (Academic Press, Amsterdam, 2008), vol. 56, pp. 219–257. https://doi.org/10.1016/S1049-250X(08)00014-1.
999 C 5 |a 10.1103/PhysRevA.89.043415
|9 -- missing cx lookup --
|1 E Heinrich-Josties
|p 043415 -
|2 Crossref
|u Heinrich-Josties, E., Pabst, S. & Santra, R. Controlling the 2p hole alignment in neon via the 2s-3p fano resonance. Phys. Rev. A 89, 043415 (2014).
|t Phys. Rev. A
|v 89
|y 2014
999 C 5 |a 10.1088/0953-4075/46/16/164022
|9 -- missing cx lookup --
|1 S Mondal
|p 164022 -
|2 Crossref
|u Mondal, S. et al. Photoelectron angular distributions for the two-photon sequential double ionization of xenon by ultrashort extreme ultraviolet free electron laser pulses. J. Phys. B: Mol. Opt. Phys. 46, 164022 (2013).
|t J. Phys. B: Mol. Opt. Phys.
|v 46
|y 2013
999 C 5 |a 10.1038/s41467-018-07152-7
|1 M Ilchen
|9 -- missing cx lookup --
|2 Crossref
|u Ilchen, M. et al. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 9, 4659 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1063/4.0000127
|9 -- missing cx lookup --
|1 R Khubbutdinov
|p 044305 -
|2 Crossref
|u Khubbutdinov, R. et al. High spatial coherence and short pulse duration revealed by the Hanbury Brown and twiss interferometry at the European XFEL. Struc. Dyn. 8, 044305 (2021).
|t Struc. Dyn.
|v 8
|y 2021
999 C 5 |a 10.1107/S1600577515004646
|9 -- missing cx lookup --
|1 KR Ferguson
|p 492 -
|2 Crossref
|u Ferguson, K. R. et al. The atomic, molecular and optical science instrument at the linac coherent light source. J. Synchrotron Rad. 22, 492–497 (2015).
|t J. Synchrotron Rad.
|v 22
|y 2015
999 C 5 |a 10.3390/app7060592
|9 -- missing cx lookup --
|1 T Tschentscher
|p 592 -
|2 Crossref
|u Tschentscher, T. et al. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 7, 592 (2017).
|t Appl. Sci.
|v 7
|y 2017
999 C 5 |a 10.1107/S1600577522012085
|9 -- missing cx lookup --
|1 T Mazza
|p 457 -
|2 Crossref
|u Mazza, T. et al. The beam transport system for the small quantum systems instrument at the European XFEL: optical layout and first commissioning results. J. Synchrotron Rad. 30, 457–467 (2023).
|t J. Synchrotron Rad.
|v 30
|y 2023
999 C 5 |a 10.1038/nature22373
|9 -- missing cx lookup --
|1 A Rudenko
|p 129 -
|2 Crossref
|u Rudenko, A. et al. Femtosecond response of polyatomic molecules to ultra-intense hard x-rays. Nature 546, 129–132 (2017).
|t Nature
|v 546
|y 2017
999 C 5 |a 10.1038/ncomms5281
|1 BF Murphy
|9 -- missing cx lookup --
|2 Crossref
|u Murphy, B. F. et al. Femtosecond x-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 5, 4281 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |9 -- missing cx lookup --
|a 10.1007/978-1-4757-4931-1
|2 Crossref
|u Blum, K. Density Matrix Theory and Applications (Springer, New York, 1996).
999 C 5 |a 10.1146/annurev.pc.33.100182.001003
|9 -- missing cx lookup --
|1 CH Greene
|p 119 -
|2 Crossref
|u Greene, C. H. & Zare, R. N. Photofragment Alignment and Orientation. Ann. Rev. Phys. Chem. 33, 119–150 (1982).
|t Ann. Rev. Phys. Chem.
|v 33
|y 1982
999 C 5 |a 10.1107/S1600577519003564
|9 -- missing cx lookup --
|1 K Toyota
|p 1017 -
|2 Crossref
|u Toyota, K. et al. xcalib: a focal spot calibrator for intense x-ray free-electron laser pulses based on the charge state distributions of light atoms. J. Synchrotron Rad. 26, 1017–1030 (2019).
|t J. Synchrotron Rad.
|v 26
|y 2019
999 C 5 |a 10.1088/0953-4075/31/19/018
|9 -- missing cx lookup --
|1 K Ueda
|p 4331 -
|2 Crossref
|u Ueda, K. et al. Angular distribution of Auger electrons in resonantly enhanced transitions from 3p photoexcited Ca+ ions. J. Phys. B: Mol. Opt. Phys. 31, 4331–4348 (1998).
|t J. Phys. B: Mol. Opt. Phys.
|v 31
|y 1998
999 C 5 |2 Crossref
|u Lohmann, B. Angle and Spin Resolved Auger Emission (Springer, Berlin Heidelberg, 1994).
999 C 5 |a 10.1088/0953-4075/23/18/018
|9 -- missing cx lookup --
|1 B Lohmann
|p 3147 -
|2 Crossref
|u Lohmann, B. Analyses and model calculations on the angular distribution and spin polarization of Auger electrons. J. Phys. B: Mol. Opt. Phys. 23, 3147–3166 (1990).
|t J. Phys. B: Mol. Opt. Phys.
|v 23
|y 1990
999 C 5 |a 10.1088/0022-3700/19/22/022
|9 -- missing cx lookup --
|1 K Blum
|p 3815 -
|2 Crossref
|u Blum, K., Lohmann, B. & Taute, E. Angular distribution and polarisation of Auger electrons. J. Phys. B: Mol. Opt. Phys. 19, 3815–3826 (1986).
|t J. Phys. B: Mol. Opt. Phys.
|v 19
|y 1986
999 C 5 |a 10.1007/BF01679570
|9 -- missing cx lookup --
|1 A Albiez
|p 97 -
|2 Crossref
|u Albiez, A., Thoma, M., Weber, W. & Mehlhorn, W. KL2,3 ionization in neon by electron impact in the range 1.5-50 keV: cross sections and alignment. Z. Phys. D. 16, 97–106 (1990).
|t Z. Phys. D.
|v 16
|y 1990
999 C 5 |a 10.1103/PhysRevLett.75.4736
|9 -- missing cx lookup --
|1 B Krässig
|p 4736 -
|2 Crossref
|u Krässig, B. et al. Nondipolar asymmetries of photoelectron angular distributions. Phys. Rev. Lett. 75, 4736–4739 (1995).
|t Phys. Rev. Lett.
|v 75
|y 1995
999 C 5 |a 10.1103/PhysRevA.45.1684
|9 -- missing cx lookup --
|1 MH Chen
|p 1684 -
|2 Crossref
|u Chen, M. H. Effect of intermediate coupling on angular distribution of Auger electrons. Phys. Rev. A 45, 1684–1689 (1992).
|t Phys. Rev. A
|v 45
|y 1992
999 C 5 |a 10.1038/ncomms4648
|1 T Mazza
|9 -- missing cx lookup --
|2 Crossref
|u Mazza, T. et al. Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nat. Commun. 5, 3648 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1038/nphoton.2016.79
|9 -- missing cx lookup --
|1 AA Lutman
|p 468 -
|2 Crossref
|u Lutman, A. A. et al. Polarization control in an x-ray free-electron laser. Nat. Photon. 10, 468–472 (2016).
|t Nat. Photon.
|v 10
|y 2016
999 C 5 |a 10.1038/s41467-023-40759-z
|1 E Prat
|9 -- missing cx lookup --
|2 Crossref
|u Prat, E. et al. An x-ray free-electron laser with a highly configurable undulator and integrated chicanes for tailored pulse properties. Nat. Commun. 14, 5069 (2023).
|t Nat. Commun.
|v 14
|y 2023
999 C 5 |a 10.1103/PhysRevLett.131.045001
|9 -- missing cx lookup --
|1 G Perosa
|p 045001 -
|2 Crossref
|u Perosa, G. et al. Femtosecond polarization shaping of free-electron laser pulses. Phys. Rev. Lett. 131, 045001 (2023).
|t Phys. Rev. Lett.
|v 131
|y 2023
999 C 5 |a 10.1107/S1600576716006014
|9 -- missing cx lookup --
|1 Z Jurek
|p 1048 -
|2 Crossref
|u Jurek, Z., Son, S.-K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of x-ray free-electron laser induced dynamics of matter. J. Appl. Cryst. 49, 1048–1056 (2016).
|t J. Appl. Cryst.
|v 49
|y 2016
999 C 5 |2 Crossref
|u Son, S.-K. et al. XATOM—an integrated toolkit for x-ray and atomic physics, in XRAYPAC, v2.0.0 (2024), GitLab https://gitlab.desy.de/CDT/xraypac.
999 C 5 |a 10.1103/PhysRevA.87.023413
|9 -- missing cx lookup --
|1 B Rudek
|p 023413 -
|2 Crossref
|u Rudek, B. et al. Resonance-enhanced multiple ionization of krypton at an x-ray free-electron laser. Phys. Rev. A 87, 023413 (2013).
|t Phys. Rev. A
|v 87
|y 2013
999 C 5 |a 10.1103/PhysRevA.85.023414
|9 -- missing cx lookup --
|1 A Sytcheva
|p 023414 -
|2 Crossref
|u Sytcheva, A., Pabst, S., Son, S.-K. & Santra, R. Enhanced nonlinear response of Ne8+ to intense ultrafast x rays. Phys. Rev. A 85, 023414 (2012).
|t Phys. Rev. A
|v 85
|y 2012
999 C 5 |a 10.1103/PhysRevLett.89.073002
|9 -- missing cx lookup --
|1 T Schneider
|p 073002 -
|2 Crossref
|u Schneider, T., Chocian, P. L. & Rost, J.-M. Separation and identification of dominant mechanisms in double photoionization. Phys. Rev. Lett. 89, 073002 (2002).
|t Phys. Rev. Lett.
|v 89
|y 2002
999 C 5 |a 10.1088/0953-4075/49/8/082001
|9 -- missing cx lookup --
|1 P Kolorenč
|p 082001 -
|2 Crossref
|u Kolorenč, P., Averbukh, V., Feifel, R. & Eland, J. Collective relaxation processes in atoms, molecules and clusters. J. Phys. B: Mol. Opt. Phys. 49, 082001 (2016).
|t J. Phys. B: Mol. Opt. Phys.
|v 49
|y 2016
999 C 5 |a 10.1103/PhysRevA.76.033416
|9 -- missing cx lookup --
|1 N Rohringer
|p 033416 -
|2 Crossref
|u Rohringer, N. & Santra, R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A 76, 033416 (2007).
|t Phys. Rev. A
|v 76
|y 2007
999 C 5 |a 10.1103/PhysRevA.77.053404
|9 -- missing cx lookup --
|1 N Rohringer
|p 053404 -
|2 Crossref
|u Rohringer, N. & Santra, R. Resonant Auger effect at high x-ray intensity. Phys. Rev. A 77, 053404 (2008).
|t Phys. Rev. A
|v 77
|y 2008
999 C 5 |a 10.1103/PhysRevLett.107.233001
|9 -- missing cx lookup --
|1 EP Kanter
|p 233001 -
|2 Crossref
|u Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).
|t Phys. Rev. Lett.
|v 107
|y 2011
999 C 5 |a 10.1038/srep18529
|1 Y Li
|9 -- missing cx lookup --
|2 Crossref
|u Li, Y. et al. Coherence and resonance effects in the ultra-intense laser-induced ultrafast response of complex atoms. Sci. Rep. 6, 18529 (2016).
|t Sci. Rep.
|v 6
|y 2016
999 C 5 |9 -- missing cx lookup --
|a 10.1007/978-0-387-26308-3
|2 Crossref
|u Drake, G. W. F. Springer Handbook of Atomic, Molecular, and Optical Physics (Springer, New York, 2006).
999 C 5 |a 10.1364/AO.19.004051
|9 -- missing cx lookup --
|1 AF Starace
|p 4051 -
|2 Crossref
|u Starace, A. F. Trends in the theory of atomic photoionization. Appl. Opt. 19, 4051–4062 (1980).
|t Appl. Opt.
|v 19
|y 1980
999 C 5 |a 10.1103/RevModPhys.75.35
|9 -- missing cx lookup --
|1 RD Deslattes
|p 35 -
|2 Crossref
|u Deslattes, R. D. et al. X-ray transition energies: new approach to a comprehensive evaluation. Rev. Mod. Phys. 75, 35–99 (2003).
|t Rev. Mod. Phys.
|v 75
|y 2003
999 C 5 |a 10.1088/0953-4075/47/2/025602
|9 -- missing cx lookup --
|1 PV Demekhin
|p 025602 -
|2 Crossref
|u Demekhin, P. V. On the breakdown of the electric dipole approximation for hard x-ray photoionization cross sections. J. Phys. B: Mol. Opt. Phys. 47, 025602 (2014).
|t J. Phys. B: Mol. Opt. Phys.
|v 47
|y 2014
999 C 5 |a 10.1016/j.radphyschem.2003.12.009
|9 -- missing cx lookup --
|1 O Hemmers
|p 123 -
|2 Crossref
|u Hemmers, O., Guillemin, R. & Lindle, D. W. Nondipole effects in soft X-ray photoemission. Radiat. Phys. Chem. 70, 123–147 (2004).
|t Radiat. Phys. Chem.
|v 70
|y 2004
999 C 5 |9 -- missing cx lookup --
|a 10.1201/9780429246593
|2 Crossref
|u Efron, B. & Tibshirani, R. J. An introduction to the bootstrap (Chapman and Hall/CRC, Philadelphia, PA, 1994).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21