Home > Publications database > Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon > print |
001 | 610668 | ||
005 | 20250804160226.0 | ||
024 | 7 | _ | |a 10.1038/s42005-024-01852-x |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-04674 |2 datacite_doi |
024 | 7 | _ | |a altmetric:170167540 |2 altmetric |
024 | 7 | _ | |a WOS:001351613500001 |2 WOS |
024 | 7 | _ | |a openalex:W4404143566 |2 openalex |
037 | _ | _ | |a PUBDB-2024-04674 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Budewig, Laura |0 P:(DE-H253)PIP1092482 |b 0 |
245 | _ | _ | |a Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon |
260 | _ | _ | |a London |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754055895_3349143 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002) |0 G:(DE-HGF)2019_IVF-HIDSS-0002 |c 2019_IVF-HIDSS-0002 |x 1 |
542 | _ | _ | |i 2024-11-07 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-11-07 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Son, Sang-Kil |0 P:(DE-H253)PIP1012452 |b 1 |
700 | 1 | _ | |a Santra, Robin |0 P:(DE-H253)PIP1012203 |b 2 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s42005-024-01852-x |b Springer Science and Business Media LLC |d 2024-11-07 |n 1 |p 363 |3 journal-article |2 Crossref |t Communications Physics |v 7 |y 2024 |x 2399-3650 |
773 | _ | _ | |a 10.1038/s42005-024-01852-x |g Vol. 7, no. 1, p. 363 |0 PERI:(DE-600)2921913-9 |n 1 |p 363 |t Communications Physics |v 7 |y 2024 |x 2399-3650 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/s42005-024-01852-x.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/610668/files/s42005-024-01852-x.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:610668 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1092482 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1092482 |
910 | 1 | _ | |a Department of Physics, University of Hamburg, |0 I:(DE-HGF)0 |b 0 |6 P:(DE-H253)PIP1092482 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1012452 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1012452 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1012452 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1012203 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 2 |6 P:(DE-H253)PIP1012203 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1012203 |
910 | 1 | _ | |a Department of Physics, University of Hamburg, |0 I:(DE-HGF)0 |b 2 |6 P:(DE-H253)PIP1012203 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)CFEL-DESYT-20160930 |k CFEL-DESYT |l FS-CFEL-3 |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-3-20120731 |k FS-CFEL-3 |l CFEL-Theory |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)CFEL-DESYT-20160930 |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-3-20120731 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nphoton.2010.176 |9 -- missing cx lookup -- |1 P Emma |p 641 - |2 Crossref |u Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010). |t Nat. Photon. |v 4 |y 2010 |
999 | C | 5 | |a 10.1038/s41566-020-0607-z |9 -- missing cx lookup -- |1 W Decking |p 391 - |2 Crossref |u Decking, W. et al. A MHz-repetition-rate hard x-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020). |t Nat. Photon. |v 14 |y 2020 |
999 | C | 5 | |a 10.1038/s41566-017-0029-8 |9 -- missing cx lookup -- |1 H-S Kang |p 708 - |2 Crossref |u Kang, H.-S. et al. Hard x-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photon. 11, 708–713 (2017). |t Nat. Photon. |v 11 |y 2017 |
999 | C | 5 | |a 10.1038/nphoton.2012.141 |9 -- missing cx lookup -- |1 T Ishikawa |p 540 - |2 Crossref |u Ishikawa, T. et al. A compact x-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012). |t Nat. Photon. |v 6 |y 2012 |
999 | C | 5 | |a 10.1038/s41566-020-00712-8 |9 -- missing cx lookup -- |1 E Prat |p 748 - |2 Crossref |u Prat, E. et al. A compact and cost-effective hard x-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–756 (2020). |t Nat. Photon. |v 14 |y 2020 |
999 | C | 5 | |a 10.1103/RevModPhys.88.015006 |9 -- missing cx lookup -- |1 C Pellegrini |p 015006 - |2 Crossref |u Pellegrini, C., Marinelli, A. & Reiche, S. The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016). |t Rev. Mod. Phys. |v 88 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevResearch.4.013220 |9 -- missing cx lookup -- |1 KS Schulze |p 013220 - |2 Crossref |u Schulze, K. S. et al. Towards perfectly linearly polarized x-rays. Phys. Rev. Res. 4, 013220 (2022). |t Phys. Rev. Res. |v 4 |y 2022 |
999 | C | 5 | |1 E Allaria |y 2014 |2 Crossref |u Allaria, E. et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 041040 (2014). |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1007/978-3-319-14394-1_25 |2 Crossref |u Santra, R. and Young, L. Interaction of intense x-ray beams with atoms, in Synchrotron Light Sources and Free-Electron Lasers, edited by Jaeschke, E. J., Khan, S., Schneider, J. R., and Hastings, J. B. (Springer International Publishing, Switzerland, 2016), pp. 1233–1260. https://doi.org/10.1007/978-3-319-14394-1_25. |
999 | C | 5 | |a 10.1038/nature09177 |9 -- missing cx lookup -- |1 L Young |p 56 - |2 Crossref |u Young, L. et al. Femtosecond electronic response of atoms to ultra-intense x-rays. Nature 466, 56–61 (2010). |t Nature |v 466 |y 2010 |
999 | C | 5 | |a 10.1103/PhysRevLett.110.173005 |9 -- missing cx lookup -- |1 H Fukuzawa |p 173005 - |2 Crossref |u Fukuzawa, H. et al. Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. Phys. Rev. Lett. 110, 173005 (2013). |t Phys. Rev. Lett. |v 110 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevA.85.063415 |9 -- missing cx lookup -- |1 S-K Son |p 063415 - |2 Crossref |u Son, S.-K. & Santra, R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A 85, 063415 (2012). |t Phys. Rev. A |v 85 |y 2012 |
999 | C | 5 | |a 10.1038/s41467-018-06745-6 |1 B Rudek |9 -- missing cx lookup -- |2 Crossref |u Rudek, B. et al. Relativistic and resonant effects in the ionization of heavy atoms by ultra-intense hard x-rays. Nat. Commun. 9, 4200 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1038/nphoton.2012.261 |9 -- missing cx lookup -- |1 B Rudek |p 858 - |2 Crossref |u Rudek, B. et al. Ultra-efficient ionization of heavy atoms by intense x-ray free-electron laser pulses. Nat. Photon. 6, 858–865 (2012). |t Nat. Photon. |v 6 |y 2012 |
999 | C | 5 | |a 10.1088/0953-4075/46/16/164024 |9 -- missing cx lookup -- |1 K Motomura |p 164024 - |2 Crossref |u Motomura, K. et al. Sequential multiphoton multiple ionization of atomic argon and xenon irradiated by x-ray free-electron laser pulses from SACLA. J. Phys. B: Mol. Opt. Phys. 46, 164024 (2013). |t J. Phys. B: Mol. Opt. Phys. |v 46 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevE.86.051911 |9 -- missing cx lookup -- |1 U Lorenz |p 051911 - |2 Crossref |u Lorenz, U., Kabachnik, N. M., Weckert, E. & Vartanyants, I. A. Impact of ultrafast electronic damage in single-particle x-ray imaging experiments. Phys. Rev. E 86, 051911 (2012). |t Phys. Rev. E |v 86 |y 2012 |
999 | C | 5 | |a 10.1038/nphys1859 |9 -- missing cx lookup -- |1 HM Quiney |p 142 - |2 Crossref |u Quiney, H. M. & Nugent, K. A. Biomolecular imaging and electronic damage using x-ray free-electron lasers. Nat. Phys. 7, 142–146 (2011). |t Nat. Phys. |v 7 |y 2011 |
999 | C | 5 | |a 10.1107/S2059798319000317 |9 -- missing cx lookup -- |1 K Nass |p 211 - |2 Crossref |u Nass, K. Radiation damage in protein crystallography at x-ray free-electron lasers. Acta Cryst. D. 75, 211–218 (2019). |t Acta Cryst. D. |v 75 |y 2019 |
999 | C | 5 | |a 10.1038/35021099 |9 -- missing cx lookup -- |1 R Neutze |p 752 - |2 Crossref |u Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond x-ray pulses. Nature 406, 752–757 (2000). |t Nature |v 406 |y 2000 |
999 | C | 5 | |a 10.1103/PhysRevA.83.033402 |9 -- missing cx lookup -- |1 S-K Son |p 033402 - |2 Crossref |u Son, S.-K., Young, L. & Santra, R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83, 033402 (2011). |t Phys. Rev. A |v 83 |y 2011 |
999 | C | 5 | |a 10.1107/S2052252517005760 |9 -- missing cx lookup -- |1 JCH Spence |p 322 - |2 Crossref |u Spence, J. C. H. XFELs for structure and dynamics in biology. IUCrJ 4, 322–339 (2017). |t IUCrJ |v 4 |y 2017 |
999 | C | 5 | |a 10.1016/j.sbi.2012.07.015 |9 -- missing cx lookup -- |1 I Schlichting |p 613 - |2 Crossref |u Schlichting, I. & Miao, J. Emerging opportunities in structural biology with x-ray free-electron lasers. Curr. Opin. Struct. Biol. 22, 613–626 (2012). |t Curr. Opin. Struct. Biol. |v 22 |y 2012 |
999 | C | 5 | |a 10.1038/s42005-020-0362-y |9 -- missing cx lookup -- |1 E Sobolev |p 97 - |2 Crossref |u Sobolev, E. et al. Megahertz single-particle imaging at the European XFEL. Commun. Phys. 3, 97 (2020). |t Commun. Phys. |v 3 |y 2020 |
999 | C | 5 | |a 10.1038/nature09748 |9 -- missing cx lookup -- |1 MM Seibert |p 78 - |2 Crossref |u Seibert, M. M. et al. Single mimivirus particles intercepted and imaged with an x-ray laser. Nature 470, 78–81 (2011). |t Nature |v 470 |y 2011 |
999 | C | 5 | |a 10.1038/nature09750 |9 -- missing cx lookup -- |1 HN Chapman |p 73 - |2 Crossref |u Chapman, H. N. et al. Femtosecond x-ray protein nanocrystallography. Nature 470, 73–77 (2011). |t Nature |v 470 |y 2011 |
999 | C | 5 | |a 10.2174/0929866523666160120152937 |9 -- missing cx lookup -- |1 J Coe |p 255 - |2 Crossref |u Coe, J. & Fromme, P. Serial femtosecond crystallography opens new avenues for structural biology. Protein Pept. Lett. 23, 255–272 (2016). |t Protein Pept. Lett. |v 23 |y 2016 |
999 | C | 5 | |a 10.1107/S2052252515014049 |9 -- missing cx lookup -- |1 L Galli |p 627 - |2 Crossref |u Galli, L. et al. Towards phasing using high x-ray intensity. IUCrJ 2, 627–634 (2015). |t IUCrJ |v 2 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-020-15610-4 |1 K Nass |9 -- missing cx lookup -- |2 Crossref |u Nass, K. et al. Structural dynamics in proteins induced by and probed with x-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1146/annurev-biochem-013118-110744 |9 -- missing cx lookup -- |1 HN Chapman |p 35 - |2 Crossref |u Chapman, H. N. X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu. Rev. Biochem. 88, 35–58 (2019). |t Annu. Rev. Biochem. |v 88 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevA.86.061401 |9 -- missing cx lookup -- |1 W Xiang |p 061401(R) - |2 Crossref |u Xiang, W., Gao, C., Fu, Y., Zeng, J. & Yuan, J. Inner-shell resonant absorption effects on evolution dynamics of the charge state distribution in a neon atom interacting with ultraintense x-ray pulses. Phys. Rev. A 86, 061401(R) (2012). |t Phys. Rev. A |v 86 |y 2012 |
999 | C | 5 | |a 10.1038/s41467-023-41505-1 |1 A Rörig |9 -- missing cx lookup -- |2 Crossref |u Rörig, A. et al. Multiple-core-hole resonance spectroscopy with ultraintense x-ray pulses. Nat. Commun. 14, 5738 (2023). |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevA.95.043412 |9 -- missing cx lookup -- |1 K Toyota |p 043412 - |2 Crossref |u Toyota, K., Son, S.-K. & Santra, R. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms. Phys. Rev. A 95, 043412 (2017). |t Phys. Rev. A |v 95 |y 2017 |
999 | C | 5 | |a 10.1088/1361-6455/aaa39a |9 -- missing cx lookup -- |1 C Buth |p 055602 - |2 Crossref |u Buth, C. et al. Neon in ultrashort and intense x-rays from free electron lasers. J. Phys. B: Mol. Opt. Phys. 51, 055602 (2018). |t J. Phys. B: Mol. Opt. Phys. |v 51 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.106.083002 |9 -- missing cx lookup -- |1 G Doumy |p 083002 - |2 Crossref |u Doumy, G. et al. Nonlinear atomic response to intense ultrashort x rays. Phys. Rev. Lett. 106, 083002 (2011). |t Phys. Rev. Lett. |v 106 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevResearch.2.023053 |9 -- missing cx lookup -- |1 S-K Son |p 023053 - |2 Crossref |u Son, S.-K., Boll, R. & Santra, R. Breakdown of frustrated absorption in x-ray sequential multiphoton ionization. Phys. Rev. Res. 2, 023053 (2020). |t Phys. Rev. Res. |v 2 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevA.107.013102 |9 -- missing cx lookup -- |1 L Budewig |p 013102 - |2 Crossref |u Budewig, L., Son, S.-K. & Santra, R. State-resolved ionization dynamics of a neon atom induced by x-ray free-electron-laser pulses. Phys. Rev. A 107, 013102 (2023). |t Phys. Rev. A |v 107 |y 2023 |
999 | C | 5 | |1 T Mazza |y 2020 |2 Crossref |u Mazza, T. et al. Mapping resonance structures in transient core-ionized atoms. Phys. Rev. X 10, 041056 (2020). |
999 | C | 5 | |a 10.1103/PhysRevA.105.033111 |9 -- missing cx lookup -- |1 L Budewig |p 033111 - |2 Crossref |u Budewig, L., Son, S.-K. & Santra, R. Theoretical investigation of orbital alignment of x-ray-ionized atoms in exotic electronic configurations. Phys. Rev. A 105, 033111 (2022). |t Phys. Rev. A |v 105 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevA.107.013111 |9 -- missing cx lookup -- |1 EV Gryzlova |p 013111 - |2 Crossref |u Gryzlova, E. V., Grum-Grzhimailo, A. N., Kiselev, M. D. & Popova, M. M. Evolution of the ionic polarization in multiple sequential ionization: general equations and an illustrative example. Phys. Rev. A 107, 013111 (2023). |t Phys. Rev. A |v 107 |y 2023 |
999 | C | 5 | |a 10.1016/S0368-2048(03)00034-3 |9 -- missing cx lookup -- |1 U Kleiman |p 29 - |2 Crossref |u Kleiman, U. & Lohmann, B. Photoionization of closed-shell atoms: Hartree–fock calculations of orientation and alignment. J. Electron Spectrosc. Relat. Phenom. 131-132, 29–50 (2003). |t J. Electron Spectrosc. Relat. Phenom. |v 131-132 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevA.16.255 |9 -- missing cx lookup -- |1 CD Caldwell |p 255 - |2 Crossref |u Caldwell, C. D. & Zare, R. N. Alignment of Cd atoms by photoionization. Phys. Rev. A 16, 255–262 (1977). |t Phys. Rev. A |v 16 |y 1977 |
999 | C | 5 | |a 10.1103/PhysRevA.24.2257 |9 -- missing cx lookup -- |1 SH Southworth |p 2257 - |2 Crossref |u Southworth, S. H. et al. Photoelectron and Auger electron asymmetries: Alignment of $${{{\rm{Xe}}}}^{+2}{D}_{\frac{5}{2}}$$ by photoionization. Phys. Rev. A 24, 2257–2260 (1981). |t Phys. Rev. A |v 24 |y 1981 |
999 | C | 5 | |a 10.1088/0953-4075/36/10/315 |9 -- missing cx lookup -- |1 H Küst |p 2073 - |2 Crossref |u Küst, H., Kleiman, U. & Mehlhorn, W. Alignment after Xe L3 photoionization by synchrotron radiation. J. Phys. B: Mol. Opt. Phys. 36, 2073–2082 (2003). |t J. Phys. B: Mol. Opt. Phys. |v 36 |y 2003 |
999 | C | 5 | |a 10.1016/S0368-2048(98)00226-6 |9 -- missing cx lookup -- |1 U Becker |p 105 - |2 Crossref |u Becker, U. Complete photoionisation experiments. J. Electron Spectrosc. Relat. Phenom. 96, 105–115 (1998). |t J. Electron Spectrosc. Relat. Phenom. |v 96 |y 1998 |
999 | C | 5 | |a 10.1088/0034-4885/55/9/003 |9 -- missing cx lookup -- |1 V Schmidt |p 1483 - |2 Crossref |u Schmidt, V. Photoionization of atoms using synchrotron radiation. Rep. Prog. Phys. 55, 1483–1659 (1992). |t Rep. Prog. Phys. |v 55 |y 1992 |
999 | C | 5 | |a 10.1103/PhysRevLett.29.7 |9 -- missing cx lookup -- |1 S Flügge |p 7 - |2 Crossref |u Flügge, S., Mehlhorn, W. & Schmidt, V. Angular distribution of Auger electrons following photoionization. Phys. Rev. Lett. 29, 7–9 (1972). |t Phys. Rev. Lett. |v 29 |y 1972 |
999 | C | 5 | |a 10.1088/0022-3700/11/10/012 |9 -- missing cx lookup -- |1 EG Berezhko |p 1749 - |2 Crossref |u Berezhko, E. G., Kabachnik, N. M. & Rostovsky, V. S. Potential-barrier effects in inner-shell photoionisation and their influence on the anisotropy of x-rays and Auger electrons. J. Phys. B: Mol. Opt. Phys. 11, 1749 (1978). |t J. Phys. B: Mol. Opt. Phys. |v 11 |y 1978 |
999 | C | 5 | |a 10.1016/0375-9601(71)90303-3 |9 -- missing cx lookup -- |1 B Cleff |p 3 - |2 Crossref |u Cleff, B. & Mehlhorn, W. On the angular distribution of Auger electrons. Phys. Lett. A 37, 3–4 (1971). |t Phys. Lett. A |v 37 |y 1971 |
999 | C | 5 | |a 10.1088/0022-3700/7/5/010 |9 -- missing cx lookup -- |1 B Cleff |p 605 - |2 Crossref |u Cleff, B. & Mehlhorn, W. Angular distribution of L3M2,3M2,3 (1S0) Auger electrons of argon. J. Phys. B: Mol. Opt. Phys. 7, 605–611 (1974). |t J. Phys. B: Mol. Opt. Phys. |v 7 |y 1974 |
999 | C | 5 | |a 10.1088/0022-3700/10/12/025 |9 -- missing cx lookup -- |1 EG Berezhko |p 2467 - |2 Crossref |u Berezhko, E. G. & Kabachnik, N. M. Theoretical study of inner-shell alignment of atoms in electron impact ionisation: angular distribution and polarisation of x-rays and Auger electrons. J. Phys. B: Mol. Opt. Phys. 10, 2467–2477 (1977). |t J. Phys. B: Mol. Opt. Phys. |v 10 |y 1977 |
999 | C | 5 | |a 10.1088/0953-4075/30/20/010 |9 -- missing cx lookup -- |1 H Schmoranzer |p 4463 - |2 Crossref |u Schmoranzer, H. et al. Angular distribution of the fluorescence radiation of Kr II satellite states. J. Phys. B: Mol. Opt. Phys. 30, 4463–4480 (1997). |t J. Phys. B: Mol. Opt. Phys. |v 30 |y 1997 |
999 | C | 5 | |a 10.1103/PhysRevA.2.1708 |9 -- missing cx lookup -- |1 J Hrdý |p 1708 - |2 Crossref |u Hrdý, J., Henins, A. & Bearden, J. A. Polarization of the $${L}_{{\alpha }_{1}}$$ x rays of mercury. Phys. Rev. A 2, 1708–1711 (1970). |t Phys. Rev. A |v 2 |y 1970 |
999 | C | 5 | |a 10.1007/BF01426233 |9 -- missing cx lookup -- |1 W Kronast |p 285 - |2 Crossref |u Kronast, W., Huster, R. & Mehlhorn, W. Alignment of atoms following photoionisation. Z. Phys. D. 2, 285–296 (1986). |t Z. Phys. D. |v 2 |y 1986 |
999 | C | 5 | |a 10.1080/09500340.2015.1047805 |9 -- missing cx lookup -- |1 SF Alexei |p 334 - |2 Crossref |u Alexei, S. F., Grum-Grzhimailo, N., Gryzlova, E. V. & Kabachnik, N. M. Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers. J. Mod. Opt. 63, 334–357 (2016). |t J. Mod. Opt. |v 63 |y 2016 |
999 | C | 5 | |a 10.1063/1.1668742 |9 -- missing cx lookup -- |1 J Cooper |p 942 - |2 Crossref |u Cooper, J. & Zare, R. N. Angular distribution of photoelectrons. J. Chem. Phys. 48, 942–943 (1968). |t J. Chem. Phys. |v 48 |y 1968 |
999 | C | 5 | |a 10.1103/PhysRevA.2.2170 |9 -- missing cx lookup -- |1 ST Manson |p 2170 - |2 Crossref |u Manson, S. T. & Cooper, J. W. Angular distribution of photoelectrons: Outer shells of noble gases. Phys. Rev. A 2, 2170–2171 (1970). |t Phys. Rev. A |v 2 |y 1970 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1007/978-3-031-08027-2 |2 Crossref |u Davis, V. T. Introduction to Photoelectron Angular Distributions (Springer, Switzerland, 2022). |
999 | C | 5 | |a 10.1103/PhysRevLett.76.4496 |9 -- missing cx lookup -- |1 S Al Moussalami |p 4496 - |2 Crossref |u Al Moussalami, S. et al. First angle-resolved photoelectron measurements following inner-shell resonant excitation in a singly charged ion. Phys. Rev. Lett. 76, 4496–4499 (1996). |t Phys. Rev. Lett. |v 76 |y 1996 |
999 | C | 5 | |a 10.1016/S0168-583X(98)00561-8 |9 -- missing cx lookup -- |1 B Rouvellou |p 287 - |2 Crossref |u Rouvellou, B. et al. Photoelectron spectroscopy experiments on singly charged positive-ions using synchrotron radiation. Nucl. Instrum. Methods Phys. Res., B 134, 287–303 (1998). |t Nucl. Instrum. Methods Phys. Res., B |v 134 |y 1998 |
999 | C | 5 | |a 10.1103/PhysRevA.83.031401 |9 -- missing cx lookup -- |1 A Rouzée |p 031401 - |2 Crossref |u Rouzée, A. et al. Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy. Phys. Rev. A 83, 031401 (2011). |t Phys. Rev. A |v 83 |y 2011 |
999 | C | 5 | |a 10.1080/09500340.2015.1047422 |9 -- missing cx lookup -- |1 M Braune |p 324 - |2 Crossref |u Braune, M. et al. Electron angular distributions of noble gases in sequential two-photon double ionization. J. Mod. Opt. 63, 324–333 (2016). |t J. Mod. Opt. |v 63 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.97.083601 |9 -- missing cx lookup -- |1 L Young |p 083601 - |2 Crossref |u Young, L. et al. X-ray microprobe of orbital alignment in strong-field ionized atoms. Phys. Rev. Lett. 97, 083601 (2006). |t Phys. Rev. Lett. |v 97 |y 2006 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/S1049-250X(08)00014-1 |2 Crossref |u Santra, R. et al. Strong-field control of x-ray processes, in Advances in Atomic, Molecular, and Optical Physics, edited by Arimondo, E., Berman, P. R., and Lin, C. C. (Academic Press, Amsterdam, 2008), vol. 56, pp. 219–257. https://doi.org/10.1016/S1049-250X(08)00014-1. |
999 | C | 5 | |a 10.1103/PhysRevA.89.043415 |9 -- missing cx lookup -- |1 E Heinrich-Josties |p 043415 - |2 Crossref |u Heinrich-Josties, E., Pabst, S. & Santra, R. Controlling the 2p hole alignment in neon via the 2s-3p fano resonance. Phys. Rev. A 89, 043415 (2014). |t Phys. Rev. A |v 89 |y 2014 |
999 | C | 5 | |a 10.1088/0953-4075/46/16/164022 |9 -- missing cx lookup -- |1 S Mondal |p 164022 - |2 Crossref |u Mondal, S. et al. Photoelectron angular distributions for the two-photon sequential double ionization of xenon by ultrashort extreme ultraviolet free electron laser pulses. J. Phys. B: Mol. Opt. Phys. 46, 164022 (2013). |t J. Phys. B: Mol. Opt. Phys. |v 46 |y 2013 |
999 | C | 5 | |a 10.1038/s41467-018-07152-7 |1 M Ilchen |9 -- missing cx lookup -- |2 Crossref |u Ilchen, M. et al. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat. Commun. 9, 4659 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1063/4.0000127 |9 -- missing cx lookup -- |1 R Khubbutdinov |p 044305 - |2 Crossref |u Khubbutdinov, R. et al. High spatial coherence and short pulse duration revealed by the Hanbury Brown and twiss interferometry at the European XFEL. Struc. Dyn. 8, 044305 (2021). |t Struc. Dyn. |v 8 |y 2021 |
999 | C | 5 | |a 10.1107/S1600577515004646 |9 -- missing cx lookup -- |1 KR Ferguson |p 492 - |2 Crossref |u Ferguson, K. R. et al. The atomic, molecular and optical science instrument at the linac coherent light source. J. Synchrotron Rad. 22, 492–497 (2015). |t J. Synchrotron Rad. |v 22 |y 2015 |
999 | C | 5 | |a 10.3390/app7060592 |9 -- missing cx lookup -- |1 T Tschentscher |p 592 - |2 Crossref |u Tschentscher, T. et al. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 7, 592 (2017). |t Appl. Sci. |v 7 |y 2017 |
999 | C | 5 | |a 10.1107/S1600577522012085 |9 -- missing cx lookup -- |1 T Mazza |p 457 - |2 Crossref |u Mazza, T. et al. The beam transport system for the small quantum systems instrument at the European XFEL: optical layout and first commissioning results. J. Synchrotron Rad. 30, 457–467 (2023). |t J. Synchrotron Rad. |v 30 |y 2023 |
999 | C | 5 | |a 10.1038/nature22373 |9 -- missing cx lookup -- |1 A Rudenko |p 129 - |2 Crossref |u Rudenko, A. et al. Femtosecond response of polyatomic molecules to ultra-intense hard x-rays. Nature 546, 129–132 (2017). |t Nature |v 546 |y 2017 |
999 | C | 5 | |a 10.1038/ncomms5281 |1 BF Murphy |9 -- missing cx lookup -- |2 Crossref |u Murphy, B. F. et al. Femtosecond x-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 5, 4281 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1007/978-1-4757-4931-1 |2 Crossref |u Blum, K. Density Matrix Theory and Applications (Springer, New York, 1996). |
999 | C | 5 | |a 10.1146/annurev.pc.33.100182.001003 |9 -- missing cx lookup -- |1 CH Greene |p 119 - |2 Crossref |u Greene, C. H. & Zare, R. N. Photofragment Alignment and Orientation. Ann. Rev. Phys. Chem. 33, 119–150 (1982). |t Ann. Rev. Phys. Chem. |v 33 |y 1982 |
999 | C | 5 | |a 10.1107/S1600577519003564 |9 -- missing cx lookup -- |1 K Toyota |p 1017 - |2 Crossref |u Toyota, K. et al. xcalib: a focal spot calibrator for intense x-ray free-electron laser pulses based on the charge state distributions of light atoms. J. Synchrotron Rad. 26, 1017–1030 (2019). |t J. Synchrotron Rad. |v 26 |y 2019 |
999 | C | 5 | |a 10.1088/0953-4075/31/19/018 |9 -- missing cx lookup -- |1 K Ueda |p 4331 - |2 Crossref |u Ueda, K. et al. Angular distribution of Auger electrons in resonantly enhanced transitions from 3p photoexcited Ca+ ions. J. Phys. B: Mol. Opt. Phys. 31, 4331–4348 (1998). |t J. Phys. B: Mol. Opt. Phys. |v 31 |y 1998 |
999 | C | 5 | |2 Crossref |u Lohmann, B. Angle and Spin Resolved Auger Emission (Springer, Berlin Heidelberg, 1994). |
999 | C | 5 | |a 10.1088/0953-4075/23/18/018 |9 -- missing cx lookup -- |1 B Lohmann |p 3147 - |2 Crossref |u Lohmann, B. Analyses and model calculations on the angular distribution and spin polarization of Auger electrons. J. Phys. B: Mol. Opt. Phys. 23, 3147–3166 (1990). |t J. Phys. B: Mol. Opt. Phys. |v 23 |y 1990 |
999 | C | 5 | |a 10.1088/0022-3700/19/22/022 |9 -- missing cx lookup -- |1 K Blum |p 3815 - |2 Crossref |u Blum, K., Lohmann, B. & Taute, E. Angular distribution and polarisation of Auger electrons. J. Phys. B: Mol. Opt. Phys. 19, 3815–3826 (1986). |t J. Phys. B: Mol. Opt. Phys. |v 19 |y 1986 |
999 | C | 5 | |a 10.1007/BF01679570 |9 -- missing cx lookup -- |1 A Albiez |p 97 - |2 Crossref |u Albiez, A., Thoma, M., Weber, W. & Mehlhorn, W. KL2,3 ionization in neon by electron impact in the range 1.5-50 keV: cross sections and alignment. Z. Phys. D. 16, 97–106 (1990). |t Z. Phys. D. |v 16 |y 1990 |
999 | C | 5 | |a 10.1103/PhysRevLett.75.4736 |9 -- missing cx lookup -- |1 B Krässig |p 4736 - |2 Crossref |u Krässig, B. et al. Nondipolar asymmetries of photoelectron angular distributions. Phys. Rev. Lett. 75, 4736–4739 (1995). |t Phys. Rev. Lett. |v 75 |y 1995 |
999 | C | 5 | |a 10.1103/PhysRevA.45.1684 |9 -- missing cx lookup -- |1 MH Chen |p 1684 - |2 Crossref |u Chen, M. H. Effect of intermediate coupling on angular distribution of Auger electrons. Phys. Rev. A 45, 1684–1689 (1992). |t Phys. Rev. A |v 45 |y 1992 |
999 | C | 5 | |a 10.1038/ncomms4648 |1 T Mazza |9 -- missing cx lookup -- |2 Crossref |u Mazza, T. et al. Determining the polarization state of an extreme ultraviolet free-electron laser beam using atomic circular dichroism. Nat. Commun. 5, 3648 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.1038/nphoton.2016.79 |9 -- missing cx lookup -- |1 AA Lutman |p 468 - |2 Crossref |u Lutman, A. A. et al. Polarization control in an x-ray free-electron laser. Nat. Photon. 10, 468–472 (2016). |t Nat. Photon. |v 10 |y 2016 |
999 | C | 5 | |a 10.1038/s41467-023-40759-z |1 E Prat |9 -- missing cx lookup -- |2 Crossref |u Prat, E. et al. An x-ray free-electron laser with a highly configurable undulator and integrated chicanes for tailored pulse properties. Nat. Commun. 14, 5069 (2023). |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.045001 |9 -- missing cx lookup -- |1 G Perosa |p 045001 - |2 Crossref |u Perosa, G. et al. Femtosecond polarization shaping of free-electron laser pulses. Phys. Rev. Lett. 131, 045001 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
999 | C | 5 | |a 10.1107/S1600576716006014 |9 -- missing cx lookup -- |1 Z Jurek |p 1048 - |2 Crossref |u Jurek, Z., Son, S.-K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of x-ray free-electron laser induced dynamics of matter. J. Appl. Cryst. 49, 1048–1056 (2016). |t J. Appl. Cryst. |v 49 |y 2016 |
999 | C | 5 | |2 Crossref |u Son, S.-K. et al. XATOM—an integrated toolkit for x-ray and atomic physics, in XRAYPAC, v2.0.0 (2024), GitLab https://gitlab.desy.de/CDT/xraypac. |
999 | C | 5 | |a 10.1103/PhysRevA.87.023413 |9 -- missing cx lookup -- |1 B Rudek |p 023413 - |2 Crossref |u Rudek, B. et al. Resonance-enhanced multiple ionization of krypton at an x-ray free-electron laser. Phys. Rev. A 87, 023413 (2013). |t Phys. Rev. A |v 87 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevA.85.023414 |9 -- missing cx lookup -- |1 A Sytcheva |p 023414 - |2 Crossref |u Sytcheva, A., Pabst, S., Son, S.-K. & Santra, R. Enhanced nonlinear response of Ne8+ to intense ultrafast x rays. Phys. Rev. A 85, 023414 (2012). |t Phys. Rev. A |v 85 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevLett.89.073002 |9 -- missing cx lookup -- |1 T Schneider |p 073002 - |2 Crossref |u Schneider, T., Chocian, P. L. & Rost, J.-M. Separation and identification of dominant mechanisms in double photoionization. Phys. Rev. Lett. 89, 073002 (2002). |t Phys. Rev. Lett. |v 89 |y 2002 |
999 | C | 5 | |a 10.1088/0953-4075/49/8/082001 |9 -- missing cx lookup -- |1 P Kolorenč |p 082001 - |2 Crossref |u Kolorenč, P., Averbukh, V., Feifel, R. & Eland, J. Collective relaxation processes in atoms, molecules and clusters. J. Phys. B: Mol. Opt. Phys. 49, 082001 (2016). |t J. Phys. B: Mol. Opt. Phys. |v 49 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevA.76.033416 |9 -- missing cx lookup -- |1 N Rohringer |p 033416 - |2 Crossref |u Rohringer, N. & Santra, R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A 76, 033416 (2007). |t Phys. Rev. A |v 76 |y 2007 |
999 | C | 5 | |a 10.1103/PhysRevA.77.053404 |9 -- missing cx lookup -- |1 N Rohringer |p 053404 - |2 Crossref |u Rohringer, N. & Santra, R. Resonant Auger effect at high x-ray intensity. Phys. Rev. A 77, 053404 (2008). |t Phys. Rev. A |v 77 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevLett.107.233001 |9 -- missing cx lookup -- |1 EP Kanter |p 233001 - |2 Crossref |u Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity x-ray pulses. Phys. Rev. Lett. 107, 233001 (2011). |t Phys. Rev. Lett. |v 107 |y 2011 |
999 | C | 5 | |a 10.1038/srep18529 |1 Y Li |9 -- missing cx lookup -- |2 Crossref |u Li, Y. et al. Coherence and resonance effects in the ultra-intense laser-induced ultrafast response of complex atoms. Sci. Rep. 6, 18529 (2016). |t Sci. Rep. |v 6 |y 2016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1007/978-0-387-26308-3 |2 Crossref |u Drake, G. W. F. Springer Handbook of Atomic, Molecular, and Optical Physics (Springer, New York, 2006). |
999 | C | 5 | |a 10.1364/AO.19.004051 |9 -- missing cx lookup -- |1 AF Starace |p 4051 - |2 Crossref |u Starace, A. F. Trends in the theory of atomic photoionization. Appl. Opt. 19, 4051–4062 (1980). |t Appl. Opt. |v 19 |y 1980 |
999 | C | 5 | |a 10.1103/RevModPhys.75.35 |9 -- missing cx lookup -- |1 RD Deslattes |p 35 - |2 Crossref |u Deslattes, R. D. et al. X-ray transition energies: new approach to a comprehensive evaluation. Rev. Mod. Phys. 75, 35–99 (2003). |t Rev. Mod. Phys. |v 75 |y 2003 |
999 | C | 5 | |a 10.1088/0953-4075/47/2/025602 |9 -- missing cx lookup -- |1 PV Demekhin |p 025602 - |2 Crossref |u Demekhin, P. V. On the breakdown of the electric dipole approximation for hard x-ray photoionization cross sections. J. Phys. B: Mol. Opt. Phys. 47, 025602 (2014). |t J. Phys. B: Mol. Opt. Phys. |v 47 |y 2014 |
999 | C | 5 | |a 10.1016/j.radphyschem.2003.12.009 |9 -- missing cx lookup -- |1 O Hemmers |p 123 - |2 Crossref |u Hemmers, O., Guillemin, R. & Lindle, D. W. Nondipole effects in soft X-ray photoemission. Radiat. Phys. Chem. 70, 123–147 (2004). |t Radiat. Phys. Chem. |v 70 |y 2004 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1201/9780429246593 |2 Crossref |u Efron, B. & Tibshirani, R. J. An introduction to the bootstrap (Chapman and Hall/CRC, Philadelphia, PA, 1994). |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|