001     607684
005     20250715170828.0
024 7 _ |a arXiv:2312.12505
|2 arXiv
024 7 _ |a 10.1140/epjc/s10052-024-12771-0
|2 doi
024 7 _ |a altmetric:163695346
|2 altmetric
024 7 _ |a 10.3204/PUBDB-2024-01987
|2 datacite_doi
024 7 _ |a WOS:001260447100004
|2 WOS
024 7 _ |2 openalex
|a openalex:W4396559107
037 _ _ |a PUBDB-2024-01987
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2312.12505
|2 arXiv
088 _ _ |a DESY-23-185
|2 DESY
100 1 _ |a Cridge, T.
|0 P:(DE-H253)PIP1103436
|b 0
|e Corresponding author
|u desy
245 _ _ |a The Impact of LHC Jet and $Z$ $p_T$ Data at up to Approximate N${}^3$LO Order in the MSHT Global PDF Fit
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719817413_2262396
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 32 pages, 17 figures, 10 tables
520 _ _ |a We present an analysis of two key sets of data constraining the high $x$ gluon at up to approximate N${}^3$LO in QCD within the MSHT global PDF fitting framework. We begin with LHC 7 and 8 TeV inclusive jet and dijet production at both NNLO and aN${}^3$LO. This makes use of the formalism established in the previous global MSHT20aN${}^3$LO PDF fit, but now considers the role of dijet production for the first time at this order. We present a detailed comparison of the fit quality and PDF impact for both cases, and consider the role that electroweak corrections, and the scale choice for inclusive jet production has. Some mild tension between these data sets in the impact on the high $x$ gluon is seen at NNLO, but this is largely eliminated at aN${}^3$LO. While a good fit quality to the dijet data is achieved at both orders, the fit quality to the inclusive jet data is relatively poor. We examine the impact of including full colour corrections in a global PDF fit for the first time, finding this to be relatively mild. We also revisit the fit to the ATLAS 8 TeV $Z$ $p_T$ data, considering the role that the $p_T$ cuts, data selection and different aspects of the aN${}^3$LO treatment have on the fit quality and PDF impact. We observe that in all cases the aN${}^3$LO fit quality is consistently improved relative to the NNLO, indicating a clear preference for higher order theory for these data.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a COLORFREE - High-Precision Global Analysis of Color-Free LHC Processes at Small Recoil (101002090)
|0 G:(EU-Grant)101002090
|c 101002090
|f ERC-2020-COG
|x 1
542 _ _ |i 2024-04-30
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-04-30
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to arXivarXiv
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Harland-Lang, L. A.
|b 1
700 1 _ |a Thorne, R. S.
|b 2
773 1 8 |a 10.1140/epjc/s10052-024-12771-0
|b Springer Science and Business Media LLC
|d 2024-04-30
|n 4
|p 446
|3 journal-article
|2 Crossref
|t The European Physical Journal C
|v 84
|y 2024
|x 1434-6052
773 _ _ |a 10.1140/epjc/s10052-024-12771-0
|g Vol. 84, no. 4, p. 446
|0 PERI:(DE-600)1459069-4
|n 4
|p 446
|t The European physical journal / C
|v 84
|y 2024
|x 1434-6052
787 0 _ |a Cridge, T. et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-06733
|r DESY-23-185 ; arXiv:2312.12505
|t The Impact of LHC Jet and $Z$$p_T$ Data at up to Approximate N${}^3$LO Order in the MSHT Global PDF Fit
856 4 _ |u https://doi.org/10.1140/epjc/s10052-024-12771-0
856 4 _ |u https://bib-pubdb1.desy.de/record/607684/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/607684/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/607684/files/s10052-024-12771-0.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/607684/files/s10052-024-12771-0.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:607684
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1103436
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a APC
999 C 5 |a 10.1140/epjc/s10052-021-09057-0
|9 -- missing cx lookup --
|1 S Bailey
|p 341 -
|2 Crossref
|u S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Eur. Phys. J. C 81, 341 (2021). arXiv:2012.04684
|t Eur. Phys. J. C
|v 81
|y 2021
999 C 5 |2 Crossref
|u NNPDF, R.D. Ball et al., Eur. Phys. J. C 82, 428 (2022). arXiv:2109.02653
999 C 5 |a 10.1103/PhysRevD.103.014013
|1 T-J Hou
|9 -- missing cx lookup --
|2 Crossref
|u T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021). arXiv:1912.10053
|t Phys. Rev. D
|v 103
|y 2021
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Eur. Phys. J. C 82, 438 (2022). arXiv:2112.11266
999 C 5 |a 10.1140/epjc/s10052-023-11236-0
|9 -- missing cx lookup --
|1 J McGowan
|p 185 -
|2 Crossref
|u J. McGowan, T. Cridge, L.A. Harland-Lang, R.S. Thorne, Eur. Phys. J. C 83, 185 (2023). arXiv:2207.04739
|t Eur. Phys. J. C
|v 83
|y 2023
999 C 5 |2 Crossref
|u T. Cridge, L.A. Harland-Lang, R.S. Thorne (2023). arXiv:2312.07665
999 C 5 |a 10.1016/j.physletb.2023.137944
|1 G Falcioni
|9 -- missing cx lookup --
|2 Crossref
|u G. Falcioni, F. Herzog, S. Moch, A. Vogt, Phys. Lett. B 842, 137944 (2023)
|t Phys. Lett. B
|v 842
|y 2023
999 C 5 |a 10.1016/j.physletb.2023.138215
|9 -- missing cx lookup --
|2 Crossref
|u G. Falcioni, F. Herzog, S. Moch, A. Vogt, Four-loop splitting functions in qcd—the gluon-to-quark case (2023). arXiv:2307.04158
999 C 5 |a 10.1016/j.physletb.2024.138468
|9 -- missing cx lookup --
|2 Crossref
|u S. Moch, B. Ruijl, T. Ueda, J. Vermaseren, A. Vogt, Additional moments and x-space approximations of four-loop splitting functions in qcd (2023). arXiv:2310.05744
999 C 5 |a 10.1016/j.physletb.2023.138351
|9 -- missing cx lookup --
|2 Crossref
|u G. Falcioni, F. Herzog, S. Moch, J. Vermaseren, A. Vogt, The double fermionic contribution to the four-loop quark-to-gluon splitting function (2023). arXiv:2310.01245
999 C 5 |a 10.1007/JHEP01(2024)029
|9 -- missing cx lookup --
|2 Crossref
|u T. Gehrmann, A. von Manteuffel, V. Sotnikov, T.-Z. Yang, Complete $$n_f^2$$ contributions to four-loop pure-singlet splitting functions (2024). arXiv:2308.07958
999 C 5 |a 10.1007/JHEP12(2022)134
|9 -- missing cx lookup --
|2 Crossref
|u J. Ablinger et al., J. High Energy Phys. 2022 (2022)
999 C 5 |a 10.1016/j.nuclphysb.2023.116427
|1 J Ablinger
|9 -- missing cx lookup --
|2 Crossref
|u J. Ablinger et al., Nucl. Phys. B 999, 116427 (2024)
|t Nucl. Phys. B
|v 999
|y 2024
999 C 5 |2 Crossref
|u J. Ablinger et al., The non-first-order-factorizable contributions to the three-loop single-mass operator matrix elements $$a_{Qg}^{(3)}$$ and $$\delta a_{Qg}^{(3)}$$ (2024). arXiv:2403.00513
999 C 5 |a 10.1140/epjc/s10052-018-5710-7
|9 -- missing cx lookup --
|1 LA Harland-Lang
|p 248 -
|2 Crossref
|u L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Eur. Phys. J. C 78, 248 (2018). arXiv:1711.05757
|t Eur. Phys. J. C
|v 78
|y 2018
999 C 5 |a 10.1140/epjc/s10052-020-7633-3
|9 -- missing cx lookup --
|1 S Bailey
|p 60 -
|2 Crossref
|u S. Bailey, L. Harland-Lang, Eur. Phys. J. C 80, 60 (2020). arXiv:1909.10541
|t Eur. Phys. J. C
|v 80
|y 2020
999 C 5 |a 10.21468/SciPostPhysProc.8.018
|9 -- missing cx lookup --
|1 R Thorne
|p 018 -
|2 Crossref
|u R. Thorne, S. Bailey, T. Cridge, L. Harland-Lang, A.D. Martin, SciPost Phys. Proc. 8, 018 (2022)
|t SciPost Phys. Proc.
|v 8
|y 2022
999 C 5 |a 10.1103/PhysRevD.108.034029
|1 X Jing
|9 -- missing cx lookup --
|2 Crossref
|u X. Jing et al., Phys. Rev. D 108, 034029 (2023). arXiv:2306.03918
|t Phys. Rev. D
|v 108
|y 2023
999 C 5 |2 Crossref
|u NNPDF, R.D. Ball et al., Eur. Phys. J. C 77, 663 (2017). arXiv:1706.00428
999 C 5 |a 10.1088/1361-6471/ac7216
|9 -- missing cx lookup --
|2 Crossref
|u PDF4LHC Working Group, R.D. Ball et al., J. Phys. G 49, 080501 (2022). arXiv:2203.05506
999 C 5 |2 Crossref
|u PDF4LHC21 Combination Group, T. Cridge, SciPost Phys. Proc. 8, 101 (2022). arXiv:2108.09099
999 C 5 |a 10.5506/APhysPolB.53.12-A1
|9 -- missing cx lookup --
|1 S Amoroso
|p 12 -
|2 Crossref
|u S. Amoroso et al., Acta Phys. Pol. B 53, 12 (2022). arXiv:2203.13923
|t Acta Phys. Pol. B
|v 53
|y 2022
999 C 5 |a 10.1103/PhysRevD.109.054027
|9 -- missing cx lookup --
|2 Crossref
|u A. Ablat et al., Exploring the impact of high-precision top-quark pair production data on the structure of the proton at the lhc (2023). arXiv:2307.11153
999 C 5 |a 10.1140/epjc/s10052-020-8328-5
|9 -- missing cx lookup --
|1 R Abdul Khalek
|p 797 -
|2 Crossref
|u R. Abdul Khalek, Eur. Phys. J. C 80, 797 (2020). arXiv:2005.11327
|t Eur. Phys. J. C
|v 80
|y 2020
999 C 5 |a 10.1007/JHEP07(2017)130
|9 -- missing cx lookup --
|1 R Boughezal
|p 130 -
|2 Crossref
|u R. Boughezal, A. Guffanti, F. Petriello, M. Ubiali, JHEP 07, 130 (2017). arXiv:1705.00343
|t JHEP
|v 07
|y 2017
999 C 5 |2 Crossref
|u E.R. Nocera, M. Ubiali, Constraining the gluon pdf at large x with lhc data (2019). arXiv:1709.09690
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., JHEP 05, 059 (2014). arXiv:1312.3524
999 C 5 |a 10.1103/PhysRevD.87.119902
|9 -- missing cx lookup --
|2 Crossref
|u CMS, S. Chatrchyan et al., Phys. Rev. D 87, 112002 (2013). arXiv:1212.6660. [Erratum: Phys. Rev. D 87, 119902 (2013)]
999 C 5 |2 Crossref
|u CMS, A.M. Sirunyan et al., Eur. Phys. J. C 77, 746 (2017). arXiv:1705.02628
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., JHEP 05, 195 (2018). arXiv:1711.02692
999 C 5 |2 Crossref
|u CMS, CMS-PAS-SMP-21-008 (2022)
999 C 5 |a 10.1103/PhysRevLett.118.072002
|1 J Currie
|9 -- missing cx lookup --
|2 Crossref
|u J. Currie, E.W.N. Glover, J. Pires, Phys. Rev. Lett. 118, 072002 (2017). arXiv:1611.01460
|t Phys. Rev. Lett.
|v 118
|y 2017
999 C 5 |a 10.1103/PhysRevLett.123.102001
|1 A Gehrmann-De Ridder
|9 -- missing cx lookup --
|2 Crossref
|u A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, J. Pires et al., Phys. Rev. Lett. 123, 102001 (2019). arXiv:1905.09047
|t Phys. Rev. Lett.
|v 123
|y 2019
999 C 5 |1 X Chen
|y 2022
|2 Crossref
|u X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, J. Mo, JHEP 09, 025 (2022). arXiv:2204.10173
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Eur. Phys. J. C 76, 291 (2016). arXiv:1512.02192
999 C 5 |2 Crossref
|u D0, V.M. Abazov et al., Phys. Rev. D 85, 052006 (2012). arXiv:1110.3771
999 C 5 |2 Crossref
|u CDF, A. Abulencia et al., Phys. Rev. D 75, 092006 (2007). arXiv:hep-ex/0701051. [Erratum: Phys. Rev. D 75, 119901 (2007)]
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., Eur. Phys. J. C 76, 265 (2016). arXiv:1512.06212
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., JHEP 02, 153 (2015). arXiv:1410.8857. [Erratum: JHEP 09, 141 (2015)]
999 C 5 |2 Crossref
|u CMS, S. Chatrchyan et al., Phys. Rev. D 90, 072006 (2014). arXiv:1406.0324
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., JHEP 03, 156 (2017). arXiv:1609.05331
999 C 5 |2 Crossref
|u CMS, A. Tumasyan et al., JHEP 02, 142 (2022). arXiv:2111.10431. [Addendum: JHEP 12, 035 (2022)]
999 C 5 |2 Crossref
|u CMS, A. Hayrapetyan et al. (2023). arXiv:2312.16669
999 C 5 |a 10.1088/1475-7516/2017/09/020
|9 -- missing cx lookup --
|2 Crossref
|u ATLAS, M. Aaboud et al., JHEP 09, 020 (2017). arXiv:1706.03192
999 C 5 |2 Crossref
|u https://xfitter.hepforge.org/data.html
999 C 5 |2 Crossref
|u E. Eren, K. Lipka, Private communication
999 C 5 |a 10.1088/1126-6708/2008/04/063
|9 -- missing cx lookup --
|1 M Cacciari
|p 063 -
|2 Crossref
|u M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008). arXiv:0802.1189
|t JHEP
|v 04
|y 2008
999 C 5 |2 Crossref
|u G. Sieber, Measurement of triple-differential dijet cross sections with the CMS detector at 8 TeV and PDF constraints. PhD thesis, KIT, Karlsruhe (2016)
999 C 5 |2 Crossref
|u K. Rabbertz, Private communication
999 C 5 |a 10.1140/epjc/s10052-010-1255-0
|9 -- missing cx lookup --
|1 T Carli
|p 503 -
|2 Crossref
|u T. Carli et al., Eur. Phys. J. C 66, 503 (2010). arXiv:0911.2985
|t Eur. Phys. J. C
|v 66
|y 2010
999 C 5 |2 Crossref
|u T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: fast pQCD calculations for PDF fits, in 14th International Workshop on Deep Inelastic Scattering, pp. 483–486 (2006). arXiv:hep-ph/0609285
999 C 5 |2 Crossref
|u fastNLO, D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, pp. 217–221 (2012). arXiv:1208.3641
999 C 5 |a 10.1007/JHEP10(2018)155
|9 -- missing cx lookup --
|1 J Currie
|p 155 -
|2 Crossref
|u J. Currie et al., JHEP 10, 155 (2018). arXiv:1807.03692
|t JHEP
|v 10
|y 2018
999 C 5 |a 10.1007/JHEP11(2012)095
|9 -- missing cx lookup --
|1 S Dittmaier
|p 095 -
|2 Crossref
|u S. Dittmaier, A. Huss, C. Speckner, JHEP 11, 095 (2012). arXiv:1210.0438
|t JHEP
|v 11
|y 2012
999 C 5 |a 10.1140/epjc/s10052-022-10028-2
|9 -- missing cx lookup --
|1 T Cridge
|p 90 -
|2 Crossref
|u T. Cridge, L.A. Harland-Lang, A.D. Martin, R.S. Thorne, Eur. Phys. J. C 82, 90 (2022). arXiv:2111.05357
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., Eur. Phys. J. C 76, 265 (2016). arXiv:1512.06212
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., Eur. Phys. J. C 75, 542 (2015). arXiv:1505.04480
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Eur. Phys. J. C 76, 538 (2016). arXiv:1511.04716
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., Phys. Rev. D 94, 092003 (2016). arXiv:1607.07281. [Addendum: Phys. Rev. D 101, 119901 (2020)]
999 C 5 |2 Crossref
|u CMS, A.M. Sirunyan et al., Eur. Phys. J. C 77, 459 (2017). arXiv:1703.01630
999 C 5 |a 10.1007/JHEP07(2016)133
|9 -- missing cx lookup --
|1 A Gehrmann-De Ridder
|p 133 -
|2 Crossref
|u A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss, T.A. Morgan, JHEP 07, 133 (2016). arXiv:1605.04295
|t JHEP
|v 07
|y 2016
999 C 5 |a 10.1007/JHEP12(2018)132
|9 -- missing cx lookup --
|1 W Bizoń
|p 132 -
|2 Crossref
|u W. Bizoń et al., JHEP 12, 132 (2018). arXiv:1805.05916
|t JHEP
|v 12
|y 2018
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., Eur. Phys. J. C 77, 367 (2017). arXiv:1612.03016
999 C 5 |a 10.1103/PhysRevLett.128.052001
|1 X Chen
|9 -- missing cx lookup --
|2 Crossref
|u X. Chen et al., Phys. Rev. Lett. 128, 052001 (2022). arXiv:2107.09085
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1016/j.physrep.2018.03.002
|9 -- missing cx lookup --
|1 J Gao
|p 1 -
|2 Crossref
|u J. Gao, L. Harland-Lang, J. Rojo, Phys. Rep. 742, 1–121 (2018)
|t Phys. Rep.
|v 742
|y 2018
999 C 5 |a 10.1103/PhysRevD.65.113007
|1 JM Campbell
|9 -- missing cx lookup --
|2 Crossref
|u J.M. Campbell, R. Ellis, Phys. Rev. D 65, 113007 (2002). arXiv:hep-ph/0202176
|t Phys. Rev. D
|v 65
|y 2002
999 C 5 |2 Crossref
|u NMC, M. Arneodo et al., Nucl. Phys. B 483, 3 (1997). arXiv:hep-ph/9610231
999 C 5 |2 Crossref
|u NuTeV, M. Tzanov et al., Phys. Rev. D 74, 012008 (2006). arXiv:hep-ex/0509010
999 C 5 |2 Crossref
|u NuSea, R.S. Towell et al., Phys. Rev. D 64, 052002 (2001). arXiv:hep-ex/0103030
999 C 5 |2 Crossref
|u NuTeV, M. Goncharov et al., Phys. Rev. D 64, 112006 (2001). arXiv:hep-ex/0102049
999 C 5 |2 Crossref
|u H1, ZEUS, F. Aaron et al., JHEP 01, 109 (2010). arXiv:0911.0884
999 C 5 |2 Crossref
|u D0, V.M. Abazov et al., Phys. Rev. D 88, 091102 (2013). arXiv:1309.2591
999 C 5 |2 Crossref
|u LHCb, R. Aaij et al., JHEP 02, 106 (2013). arXiv:1212.4620
999 C 5 |2 Crossref
|u LHCb, R. Aaij et al., JHEP 06, 058 (2012). arXiv:1204.1620
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Phys. Lett. B 725, 223 (2013). arXiv:1305.4192
999 C 5 |2 Crossref
|u LHCb, R. Aaij et al., JHEP 05, 109 (2015). arXiv:1503.00963
999 C 5 |a 10.1088/1475-7516/2014/02/013
|9 -- missing cx lookup --
|2 Crossref
|u CMS, S. Chatrchyan et al., JHEP 02, 013 (2014). arXiv:1310.1138
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., Eur. Phys. J. C 77, 367 (2017). arXiv:1612.03016
999 C 5 |2 Crossref
|u D0, V.M. Abazov et al., Phys. Rev. Lett. 112, 151803 (2014). arXiv:1312.2895. [Erratum: Phys. Rev. Lett. 114, 049901 (2015)]
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Eur. Phys. J. C 76, 538 (2016). arXiv:1511.04716
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., JHEP 05, 077 (2018). arXiv:1711.03296
999 C 5 |2 Crossref
|u CMS, A.M. Sirunyan et al., Eur. Phys. J. C 77, 459 (2017). arXiv:1703.01630
999 C 5 |2 Crossref
|u ATLAS, G. Aad et al., Eur. Phys. J. C 79, 760 (2019). arXiv:1904.05631
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., Eur. Phys. J. C 76, 265 (2016). arXiv:1512.06212
999 C 5 |2 Crossref
|u CMS, V. Khachatryan et al., Eur. Phys. J. C 75, 542 (2015). arXiv:1505.04480
999 C 5 |2 Crossref
|u ATLAS, M. Aaboud et al., JHEP 12, 059 (2017). arXiv:1710.05167


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21