000607657 001__ 607657
000607657 005__ 20250723171756.0
000607657 0247_ $$2doi$$a10.1107/S1600577524000158
000607657 0247_ $$2ISSN$$a0909-0495
000607657 0247_ $$2ISSN$$a1600-5775
000607657 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01986
000607657 0247_ $$2altmetric$$aaltmetric:159029048
000607657 0247_ $$2pmid$$apmid:38306300
000607657 0247_ $$2WOS$$aWOS:001206975000003
000607657 0247_ $$2openalex$$aopenalex:W4391463830
000607657 037__ $$aPUBDB-2024-01986
000607657 041__ $$aEnglish
000607657 082__ $$a550
000607657 1001_ $$0P:(DE-H253)PIP1095740$$aRafie-Zinedine, Safi$$b0$$eCorresponding author
000607657 245__ $$aEnhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack
000607657 260__ $$a[Erscheinungsort nicht ermittelbar]$$bWiley-Blackwell$$c2024
000607657 3367_ $$2DRIVER$$aarticle
000607657 3367_ $$2DataCite$$aOutput Types/Journal article
000607657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1720512794_3910021
000607657 3367_ $$2BibTeX$$aARTICLE
000607657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000607657 3367_ $$00$$2EndNote$$aJournal Article
000607657 520__ $$aThis work investigates the performance of the electrospray aerosol generator atthe European X-ray Free Electron Laser (EuXFEL). This generator is, togetherwith an aerodynamic lens stack that transports the particles into the X-rayinteraction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. Forthese experiments to be successful, it is necessary to achieve high transmission ofparticles from solution into the vacuum interaction region. Particle transmissionis highly dependent on efficient neutralization of the charged aerosol generatedby the electrospray mechanism as well as the geometry in the vicinity of theTaylor cone. We report absolute particle transmission values for differentneutralizers and geometries while keeping the conditions suitable for SPIexperiments. Our findings reveal that a vacuum ultraviolet ionizer demonstratesa transmission efficiency approximately seven times greater than the soft X-rayionizer used previously. Combined with an optimized orifice size on the counterelectrode, we achieve > 40% particle transmission from solution into the X-rayinteraction region. These findings offer valuable insights for optimizing elec-trospray aerosol generator configurations and data rates for SPI experiments
000607657 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x0
000607657 542__ $$2Crossref$$i2024-02-02$$uhttps://creativecommons.org/licenses/by/4.0/legalcode
000607657 542__ $$2Crossref$$i2024-02-02$$uhttps://creativecommons.org/licenses/by/4.0/legalcode
000607657 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000607657 693__ $$0EXP:(DE-H253)XFEL-Exp-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-Exp-20150101$$aXFEL$$eExperiments at XFEL$$x0
000607657 7001_ $$aVarma Yenupuri, Tej$$b1
000607657 7001_ $$aWorbs, Lena$$b2
000607657 7001_ $$aMaia, Filipe R. N. C.$$b3
000607657 7001_ $$aHeymann, Michael$$b4
000607657 7001_ $$aSchulz, Joachim$$b5
000607657 7001_ $$aBielecki, Johan$$b6
000607657 77318 $$2Crossref$$3journal-article$$a10.1107/s1600577524000158$$bInternational Union of Crystallography (IUCr)$$d2024-02-02$$n2$$p222-232$$tJournal of Synchrotron Radiation$$v31$$x1600-5775$$y2024
000607657 773__ $$0PERI:(DE-600)2021413-3$$a10.1107/S1600577524000158$$gVol. 31, no. 2, p. 222 - 232$$n2$$p222-232$$tJournal of synchrotron radiation$$v31$$x1600-5775$$y2024
000607657 8564_ $$uhttps://bib-pubdb1.desy.de/record/607657/files/Journal%20of%20Synchrotron%20Radiation%20-%202024%20-%20Rafie-Zinedine%20-%20Enhancing%20electrospray%20ionization%20efficiency%20for%20particle.pdf$$yOpenAccess
000607657 8564_ $$uhttps://bib-pubdb1.desy.de/record/607657/files/Journal%20of%20Synchrotron%20Radiation%20-%202024%20-%20Rafie-Zinedine%20-%20Enhancing%20electrospray%20ionization%20efficiency%20for%20particle.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000607657 8767_ $$8W-2024-00026-b$$92024-05-28$$d2024-06-04$$eAPC$$jDEAL$$lWiley$$v17.86$$zXFEL
000607657 8767_ $$8W-2024-00026-b$$92024-05-28$$d2024-06-04$$ePayment fee$$jDEAL$$lWiley$$v0.35$$zMPDL Gebühr
000607657 8767_ $$81$$92024-05-28$$d2024-06-04$$eAPC$$jStorniert$$lWiley$$zDFG OAPK (Projekt)
000607657 8767_ $$81$$92024-05-28$$d2024-06-04$$eAPC$$jZahlung erfolgt$$lWiley$$zDFG OAPK (Projekt)
000607657 8767_ $$8W-2024-01187-b$$92025$$d2025-07-15$$eAPC$$jStorniert$$lWiley$$v-11.28$$zKorrketur MwSt -> 7%
000607657 909CO $$ooai:bib-pubdb1.desy.de:607657$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000607657 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095740$$aEuropean XFEL$$b0$$kXFEL.EU
000607657 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x0
000607657 9141_ $$y2024
000607657 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000607657 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000607657 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-29$$wger
000607657 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-08T13:56:53Z
000607657 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-08T13:56:53Z
000607657 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000607657 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000607657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000607657 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000607657 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000607657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SYNCHROTRON RADIAT : 2022$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-03-08T13:56:53Z
000607657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000607657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000607657 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000607657 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000607657 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000607657 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000607657 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000607657 9201_ $$0I:(DE-H253)XFEL_E2_SEC-20210408$$kXFEL_E2_SEC$$lSample Environment and Characterisation$$x0
000607657 980__ $$ajournal
000607657 980__ $$aVDB
000607657 980__ $$aUNRESTRICTED
000607657 980__ $$aI:(DE-H253)XFEL_E2_SEC-20210408
000607657 980__ $$aAPC
000607657 9801_ $$aAPC
000607657 9801_ $$aFullTexts
000607657 999C5 $$1Ayyer$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.410851$$p15 -$$tOptica$$v8$$y2021
000607657 999C5 $$1Bielecki$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aav8801$$peaav8801 -$$tSci. Adv.$$v5$$y2019
000607657 999C5 $$1Bielecki$$2Crossref$$9-- missing cx lookup --$$a10.1063/4.0000024$$p040901 -$$tStruct. Dyn.$$v7$$y2020
000607657 999C5 $$1Bock$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.progpolymsci.2012.03.002$$p1510 -$$tProg. Polym. Sci.$$v37$$y2012
000607657 999C5 $$1Bogan$$2Crossref$$9-- missing cx lookup --$$a10.1021/nl072728k$$p310 -$$tNano Lett.$$v8$$y2008
000607657 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/0021-8502(95)00027-A$$p963 -$$tJ. Aerosol Sci.$$v26$$y1995
000607657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252519004317$$uDaurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Mühlig, K., Seibert, M. M., Hantke, M. F., Nettelblad, C., Benner, W. H., Svenda, M., Tîmneanu, N., Ekeberg, T., Loh, N. D., Pietrini, A., Zani, A., Rath, A. D., Westphal, D., Kirian, R. A., Awel, S., Wiedorn, M. O., van der Schot, G., Carlsson, G. H., Hasse, D., Sellberg, J. A., Barty, A., Andreasson, J., Boutet, S., Williams, G., Koglin, J., Andersson, I., Hajdu, J. & Larsson, D. S. D. (2019). IUCrJ, 6, 500.
000607657 999C5 $$1Decking$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-020-0607-z$$p391 -$$tNat. Photon.$$v14$$y2020
000607657 999C5 $$1Ebeling$$2Crossref$$9-- missing cx lookup --$$a10.1021/ac000559h$$p5158 -$$tAnal. Chem.$$v72$$y2000
000607657 999C5 $$1Ekeberg$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41377-023-01352-7$$p15 -$$tLight Sci. Appl.$$v13$$y2022
000607657 999C5 $$1Ekeberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.098102$$p098102 -$$tPhys. Rev. Lett.$$v114$$y2015
000607657 999C5 $$1Enayati$$2Crossref$$9-- missing cx lookup --$$a10.1098/rsif.2009.0348$$p667 -$$tJ. R. Soc. Interface$$v7$$y2010
000607657 999C5 $$1Fu$$2Crossref$$9-- missing cx lookup --$$a10.1080/02786826.2011.582899$$p1176 -$$tAerosol Sci. Technol.$$v45$$y2011
000607657 999C5 $$1Gañán-Calvo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.217$$p217 -$$tPhys. Rev. Lett.$$v79$$y1997
000607657 999C5 $$1Gorkhover$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0110-y$$p150 -$$tNat. Photon.$$v12$$y2018
000607657 999C5 $$1Hantke$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252518010837$$p673 -$$tIUCrJ$$v5$$y2018
000607657 999C5 $$1Hantke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2014.270$$p943 -$$tNat. Photon.$$v8$$y2014
000607657 999C5 $$1Ho$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-019-13905-9$$p167 -$$tNat. Commun.$$v11$$y2020
000607657 999C5 $$1Jaworek$$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-006-0842-9$$p266 -$$tJ. Mater. Sci.$$v42$$y2007
000607657 999C5 $$1Jaworek$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-8502(98)00058-5$$p975 -$$tJ. Aerosol Sci.$$v30$$y1999
000607657 999C5 $$1Jaworek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elstat.2007.10.001$$p197 -$$tJ. Electrostatics$$v66$$y2008
000607657 999C5 $$1Knoška$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-14434-6$$p657 -$$tNat. Commun.$$v11$$y2020
000607657 999C5 $$1Kurta$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.119.158102$$p158102 -$$tPhys. Rev. Lett.$$v119$$y2017
000607657 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1080/02786829408959748$$p293 -$$tAerosol Sci. Technol.$$v22$$y1995
000607657 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jaerosci.2014.06.003$$p148 -$$tJ. Aerosol Sci.$$v76$$y2014
000607657 999C5 $$1Lundholm$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252518010047$$p531 -$$tIUCrJ$$v5$$y2018
000607657 999C5 $$1Mora$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.fluid.39.050905.110159$$p217 -$$tAnnu. Rev. Fluid Mech.$$v39$$y2007
000607657 999C5 $$1Mora$$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112088002307$$p1 -$$tJ. Fluid Mech.$$v195$$y1988
000607657 999C5 $$1Munke$$2Crossref$$9-- missing cx lookup --$$a10.1038/sdata.2016.64$$p160064 -$$tSci. Data$$v3$$y2016
000607657 999C5 $$1Neutze$$2Crossref$$9-- missing cx lookup --$$a10.1038/35021099$$p752 -$$tNature$$v406$$y2000
000607657 999C5 $$1Reddy$$2Crossref$$9-- missing cx lookup --$$a10.1038/sdata.2017.79$$p170079 -$$tSci. Data$$v4$$y2017
000607657 999C5 $$1Rose$$2Crossref$$9-- missing cx lookup --$$a10.1107/S205225251801120X$$p727 -$$tIUCrJ$$v5$$y2018
000607657 999C5 $$1Schot$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6704$$p5704 -$$tNat. Commun.$$v6$$y2015
000607657 999C5 $$1Seibert$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09748$$p78 -$$tNature$$v470$$y2011
000607657 999C5 $$2Crossref$$uSeltzer, S. (1995). Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, NIST Standard Reference Database 126. NIST, Bethesda, MD, USA.
000607657 999C5 $$1Sobolev$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-020-0362-y$$p97 -$$tCommun. Phys.$$v3$$y2020
000607657 999C5 $$1Taylor$$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1964.0151$$p383 -$$tProc. R. Soc. London A$$v280$$y1964
000607657 999C5 $$1Vakili$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521013370$$p331 -$$tJ. Synchrotron Rad.$$v29$$y2022
000607657 999C5 $$1Wilm$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-1176(94)04024-9$$p167 -$$tInt. J. Mass Spectrom. Ion Processes$$v136$$y1994
000607657 999C5 $$1Zeleny$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.3.69$$p69 -$$tPhys. Rev.$$v3$$y1914