000607622 001__ 607622 000607622 005__ 20250723171755.0 000607622 0247_ $$2doi$$a10.1038/s41467-024-48687-2 000607622 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01958 000607622 0247_ $$2altmetric$$aaltmetric:163944714 000607622 0247_ $$2pmid$$apmid:38816362 000607622 0247_ $$2WOS$$aWOS:001236316700008 000607622 0247_ $$2openalex$$aopenalex:W4399158274 000607622 037__ $$aPUBDB-2024-01958 000607622 041__ $$aEnglish 000607622 082__ $$a500 000607622 1001_ $$0P:(DE-H253)PIP1025978$$aBloss, Dana$$b0$$eCorresponding author 000607622 245__ $$aX-ray radiation damage cycle of solvated inorganic ions 000607622 260__ $$a[London]$$bNature Publishing Group UK$$c2024 000607622 3367_ $$2DRIVER$$aarticle 000607622 3367_ $$2DataCite$$aOutput Types/Journal article 000607622 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719909212_3574709 000607622 3367_ $$2BibTeX$$aARTICLE 000607622 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000607622 3367_ $$00$$2EndNote$$aJournal Article 000607622 500__ $$a05K19RK2, 2023-04346 000607622 520__ $$aX-ray-induced damage is one of the key topics in radiation chemistry. Substantialdamage is attributed to low-energy electrons and radicals emergingfrom direct inner-shell photoionization or produced by subsequent processes.We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueoussolutions of inorganic ions to investigate the production of low-energyelectrons (LEEs) in a predicted cascade of intermolecular charge- and energytransferprocesses, namely electron-transfer-mediated decay (ETMD) andinteratomic/intermolecular Coulombic decay (ICD). An advanced coincidencetechnique allows us to identify several LEE-producing steps during the decayof 1s vacancies in solvated Mg$^{2+}$ ions, which escaped observation in previousnon-coincident experiments. We provide strong evidence for the predictedrecovering of the ion’s initial state. In natural environments the recovering ofthe ion’s initial state is expected to cause inorganic ions to be radiationdamagehot spots, repeatedly producing destructive particles under continuousirradiation. 000607622 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0 000607622 536__ $$0G:(DE-H253)I-20210172$$aFS-Proposal: I-20210172 (I-20210172)$$cI-20210172$$x1 000607622 536__ $$0G:(DE-HGF)2020_Join2-SWEDEN-DESY$$aSWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)$$c2020_Join2-SWEDEN-DESY$$x2 000607622 536__ $$0G:(DE-Ds200)BMBF-05K22RK1$$a05K22RK1 - Verbundprojekt 05K2022 - TRANSALP: Zeit- & winkelaufgelöste Spektroskopie an Proben in der flüssigen Phase. Teilprojekt 2: Aufbau Liquid Jet und KI-basierte Datenanalyse. (BMBF-05K22RK1)$$cBMBF-05K22RK1$$f05K22RK1$$x3 000607622 536__ $$0G:(GEPRIS)491565994$$aSFB 1319 T01 - Förderung des Wissenschaftsverständnisses in Schulen durch den Transfer von ELCH-Aktivitäten (T01) (491565994)$$c491565994$$x4 000607622 536__ $$0G:(GEPRIS)509471550$$aDFG project 509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)$$c509471550$$x5 000607622 536__ $$0G:(EU-Grant)692657$$aETMD_ICEC - Efficient pathways to neutralization and radical production enabled by environment (692657)$$c692657$$fERC-2015-AdG$$x6 000607622 542__ $$2Crossref$$i2024-05-30$$uhttps://creativecommons.org/licenses/by/4.0 000607622 542__ $$2Crossref$$i2024-05-30$$uhttps://creativecommons.org/licenses/by/4.0 000607622 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000607622 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0 000607622 7001_ $$0P:(DE-H253)PIP1017364$$aTrinter, Florian$$b1 000607622 7001_ $$0P:(DE-H253)PIP1083693$$aUnger, Isaak$$b2 000607622 7001_ $$0P:(DE-H253)PIP1082281$$aZindel, Christina$$b3 000607622 7001_ $$0P:(DE-H253)PIP1088787$$aHonisch, Carolin$$b4 000607622 7001_ $$0P:(DE-H253)PIP1032785$$aViehmann, Johannes$$b5 000607622 7001_ $$0P:(DE-H253)PIP1032198$$aKiefer, Nils$$b6 000607622 7001_ $$0P:(DE-H253)PIP1085124$$aMarder, Lutz$$b7 000607622 7001_ $$0P:(DE-H253)PIP1022146$$aKüstner-Wetekam, Catmarna$$b8 000607622 7001_ $$0P:(DE-H253)PIP1097719$$aHeikura, Emilia$$b9 000607622 7001_ $$0P:(DE-H253)PIP1027260$$aCederbaum, Lorenz S.$$b10 000607622 7001_ $$0P:(DE-H253)PIP1083875$$aBjörneholm, Olle$$b11 000607622 7001_ $$0P:(DE-H253)PIP1008114$$aHergenhahn, Uwe$$b12 000607622 7001_ $$0P:(DE-H253)PIP1010716$$aEhresmann, Arno$$b13 000607622 7001_ $$0P:(DE-H253)PIP1017360$$aHans, Andreas$$b14$$eCorresponding author 000607622 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-48687-2$$bSpringer Science and Business Media LLC$$d2024-05-30$$n1$$p4594$$tNature Communications$$v15$$x2041-1723$$y2024 000607622 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-48687-2$$gVol. 15, no. 1, p. 4594$$n1$$p4594$$tNature Communications$$v15$$x2041-1723$$y2024 000607622 8564_ $$uhttps://bib-pubdb1.desy.de/record/607622/files/s41467-024-48687-2.pdf$$yOpenAccess 000607622 8564_ $$uhttps://bib-pubdb1.desy.de/record/607622/files/s41467-024-48687-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000607622 909CO $$ooai:bib-pubdb1.desy.de:607622$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025978$$aExternal Institute$$b0$$kExtern 000607622 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017364$$aEuropean XFEL$$b1$$kXFEL.EU 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017364$$aExternal Institute$$b1$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083693$$aExternal Institute$$b2$$kExtern 000607622 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083693$$aEuropean XFEL$$b2$$kXFEL.EU 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082281$$aExternal Institute$$b3$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088787$$aExternal Institute$$b4$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032785$$aExternal Institute$$b5$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032198$$aExternal Institute$$b6$$kExtern 000607622 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085124$$aEuropean XFEL$$b7$$kXFEL.EU 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085124$$aExternal Institute$$b7$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1022146$$aExternal Institute$$b8$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097719$$aExternal Institute$$b9$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027260$$aExternal Institute$$b10$$kExtern 000607622 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083875$$aEuropean XFEL$$b11$$kXFEL.EU 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083875$$aExternal Institute$$b11$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008114$$aExternal Institute$$b12$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010716$$aExternal Institute$$b13$$kExtern 000607622 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017360$$aExternal Institute$$b14$$kExtern 000607622 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0 000607622 9141_ $$y2024 000607622 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29 000607622 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29 000607622 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29 000607622 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000607622 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29 000607622 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000607622 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29 000607622 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z 000607622 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z 000607622 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z 000607622 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02 000607622 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02 000607622 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0 000607622 980__ $$ajournal 000607622 980__ $$aVDB 000607622 980__ $$aI:(DE-H253)HAS-User-20120731 000607622 980__ $$aUNRESTRICTED 000607622 9801_ $$aFullTexts 000607622 999C5 $$1K Kamiya$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(15)61167-9$$p469 -$$tLancet$$uKamiya, K. et al. Long-term effects of radiation exposure on health. Lancet 386, 469–478 (2015).$$v386$$y2015 000607622 999C5 $$1J E$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-97142-5$$tSci. Rep.$$uE, J. et al. Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser. Sci. Rep. 11, 17976 (2021).$$v11$$y2021 000607622 999C5 $$1E Alizadeh$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-physchem-040513-103605$$p379 -$$tAnnu. Rev. Phys. Chem.$$uAlizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).$$v66$$y2015 000607622 999C5 $$1K Sauer$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-34247-z$$tNat. Commun.$$uSauer, K. et al. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nat. Commun. 13, 7829 (2022).$$v13$$y2022 000607622 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-023-01302-1$$p1408 -$$tNat. Chem.$$uGopakumar, G. et al. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat. Chem. 15, 1408–1414 (2023).$$v15$$y2023 000607622 999C5 $$1MA Huels$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja029527x$$p4467 -$$tJ. Am. Chem. Soc.$$uHuels, M. A., Boudaïffa, B., Cloutier, P., Hunting, D. & Sanche, L. Single, Double, and Multiple Double Strand Breaks Induced in DNA by 3−100 eV Electrons. J. Am. Chem. Soc. 125, 4467–4477 (2003).$$v125$$y2003 000607622 999C5 $$1V Stumpf$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.2429$$p237 -$$tNat. Chem.$$uStumpf, V., Gokhberg, K. & Cederbaum, L. S. The role of metal ions in X-ray-induced photochemistry. Nat. Chem. 8, 237–241 (2016).$$v8$$y2016 000607622 999C5 $$1T Jahnke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1498$$p139 -$$tNat. Phys.$$uJahnke, T. et al. Ultrafast energy transfer between water molecules. Nat. Phys. 6, 139–142 (2010).$$v6$$y2010 000607622 999C5 $$1M Mucke$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1500$$p143 -$$tNat. Phys.$$uMucke, M. et al. A hitherto unrecognized source of low-energy electrons in water. Nat. Phys. 6, 143–146 (2010).$$v6$$y2010 000607622 999C5 $$1P Slavíček$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja5117588$$p18170 -$$tJ. Am. Chem. Soc.$$uSlavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-Transfer Mediated Enhancement of Nonlocal Electronic Relaxation Processes in X-ray Irradiated Liquid Water. J. Am. Chem. Soc. 136, 18170–18176 (2014).$$v136$$y2014 000607622 999C5 $$1T Gadeyne$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1SC06741A$$p1675 -$$tChem. Sci.$$uGadeyne, T., Zhang, P., Schild, A. & Wörner, H. J. Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths. Chem. Sci. 13, 1675–1692 (2022).$$v13$$y2022 000607622 999C5 $$1P Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.133001$$p133001 -$$tPhys. Rev. Lett.$$uZhang, P., Perry, C., Luu, T. T., Matselyukh, D. & Wörner, H. J. Intermolecular Coulombic Decay in Liquid Water. Phys. Rev. Lett. 128, 133001 (2022).$$v128$$y2022 000607622 999C5 $$1I Unger$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.2727$$p708 -$$tNat. Chem.$$uUnger, I. et al. Observation of electron-transfer-mediated decay in aqueous solution. Nat. Chem. 9, 708–714 (2017).$$v9$$y2017 000607622 999C5 $$1S Hartweg$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.adh0184$$p1161 -$$tScience$$uHartweg, S. et al. Solvated dielectrons from optical excitation: An effective source of low-energy electrons. Science 380, 1161–1165 (2023).$$v380$$y2023 000607622 999C5 $$1R Strick$$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200105026$$p899 -$$tJ. Cell Biol.$$uStrick, R., Strissel, P. L., Gavrilov, K. & Levi-Setti, R. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol. 155, 899–910 (2001).$$v155$$y2001 000607622 999C5 $$1BM Altura$$2Crossref$$uAltura, B. M. & Altura, B. T. Importance of Ionized Magnesium Measurements in Physiology and Medicine and the Need for Ion-selective Electrodes. J. Clin. Case. Stud. 1, 1–4 (2016).$$y2016 000607622 999C5 $$1J Zobeley$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1395555$$p5076 -$$tJ. Chem. Phys.$$uZobeley, J., Santra, R. & Cederbaum, L. S. Electronic decay in weakly bound heteroclusters: Energy transfer versus electron transfer. J. Chem. Phys. 115, 5076–5088 (2001).$$v115$$y2001 000607622 999C5 $$1R Santra$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(02)00143-6$$p1 -$$tPhys. Rep.$$uSantra, R. & Cederbaum, L. S. Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 368, 1–117 (2002).$$v368$$y2002 000607622 999C5 $$1P Kolorenč$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3043437$$p244102 -$$tJ. Chem. Phys.$$uKolorenč, P., Averbukh, V., Gokhberg, K. & Cederbaum, L. S. Ab initio calculation of interatomic decay rates of excited doubly ionized states in clusters. J. Chem. Phys. 129, 244102 (2008).$$v129$$y2008 000607622 999C5 $$1G Gopakumar$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP00227B$$p8661 -$$tPhys. Chem. Chem. Phys.$$uGopakumar, G. et al. Probing aqueous ions with non-local Auger relaxation. Phys. Chem. Chem. Phys. 24, 8661–8671 (2022).$$v24$$y2022 000607622 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chemphys.2016.09.006$$uFasshauer, E., Förstel, M., Mucke, M., Arion, T. & Hergenhahn, U. Theoretical and experimental investigation of Electron Transfer Mediated Decay in ArKr clusters. Chem. Phys. 482, 226–238 (2017). 000607622 999C5 $$1MN Pohl$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcb.7b06061$$p7709 -$$tJ. Phys. Chem. B$$uPohl, M. N. et al. Sensitivity of Electron Transfer Mediated Decay to Ion Pairing. J. Phys. Chem. B 121, 7709–7714 (2017).$$v121$$y2017 000607622 999C5 $$1S Malerz$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP00430A$$p8246 -$$tPhys. Chem. Chem. Phys.$$uMalerz, S. et al. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 23, 8246–8260 (2021).$$v23$$y2021 000607622 999C5 $$1R Signorell$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP00164K$$p13438 -$$tPhys. Chem. Chem. Phys.$$uSignorell, R. & Winter, B. Photoionization of the aqueous phase: clusters, droplets and liquid jets. Phys. Chem. Chem. Phys. 24, 13438–13460 (2022).$$v24$$y2022 000607622 999C5 $$1MN Pohl$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CP05748K$$p8081 -$$tPhys. Chem. Chem. Phys.$$uPohl, M. N. et al. Photoelectron circular dichroism in angle-resolved photoemission from liquid fenchone. Phys. Chem. Chem. Phys. 24, 8081–8092 (2022).$$v24$$y2022 000607622 999C5 $$1G Öhrwall$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp108956v$$p17057 -$$tJ. Phys. Chem. B$$uÖhrwall, G. et al. Charge Dependence of Solvent-Mediated Intermolecular Coster-Kronig Decay Dynamics of Aqueous Ions. J. Phys. Chem. B 114, 17057–17061 (2010).$$v114$$y2010 000607622 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.accounts.2c00548$$p77 -$$tAcc. Chem. Res.$$uWinter, B., Thürmer, S. & Wilkinson, I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc. Chem. Res. 56, 77–85 (2023).$$v56$$y2023 000607622 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp030263q$$p2625 -$$tJ. Phys. Chem. A$$uWinter, B. et al. Full Valence Band Photoemission from Liquid Water Using EUV Synchrotron Radiation. J. Phys. Chem. A 108, 2625–2632 (2004).$$v108$$y2004 000607622 999C5 $$1W Pokapanich$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja203430s$$p13430 -$$tJ. Am. Chem. Soc.$$uPokapanich, W. et al. Ionic-Charge Dependence of the Intermolecular Coulombic Decay Time Scale for Aqueous Ions Probed by the Core-Hole Clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).$$v133$$y2011 000607622 999C5 $$1T Jahnke$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c00106$$p11295 -$$tChem. Rev.$$uJahnke, T. et al. Interatomic and Intermolecular Coulombic Decay. Chem. Rev. 120, 11295–11369 (2020).$$v120$$y2020 000607622 999C5 $$1E Fasshauer$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/10/103026$$p103026 -$$tNew J. Phys.$$uFasshauer, E., Förstel, M., Pallmann, S., Pernpointner, M. & Hergenhahn, U. Using ICD for structural analysis of clusters: a case study on NeAr clusters. New J. Phys. 16, 103026 (2014).$$v16$$y2014 000607622 999C5 $$1M Förstel$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.6b06665$$p22957 -$$tJ. Phys. Chem. C$$uFörstel, M. et al. Long-Range Interatomic Coulombic Decay in ArXe Clusters: Experiment and Theory. J. Phys. Chem. C 120, 22957–22971 (2016).$$v120$$y2016 000607622 999C5 $$1S Roy$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcb.0c05681$$p8141 -$$tJ. Phys. Chem. B$$uRoy, S., Patra, A., Saha, S., Palit, D. K. & Mondal, J. A. Restructuring of Hydration Shell Water due to Solvent-Shared Ion Pairing (SSIP): A Case Study of Aqueous MgCl2 and LaCl3 Solutions. J. Phys. Chem. B 124, 8141–8148 (2020).$$v124$$y2020 000607622 999C5 $$1KM Callahan$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp909132a$$p5141 -$$tJ. Phys. Chem. A$$uCallahan, K. M., Casillas-Ituarte, N. N., Roeselová, M., Allen, H. C. & Tobias, D. J. Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions. J. Phys. Chem. A 114, 5141–5148 (2010).$$v114$$y2010 000607622 999C5 $$1M Faubel$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01384861$$p269 -$$tZ. Phys. D—Atoms, Mol. Clust.$$uFaubel, M., Schlemmer, S. & Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D—Atoms, Mol. Clust. 10, 269–277 (1988).$$v10$$y1988 000607622 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr040381p$$p1176 -$$tChem. Rev.$$uWinter, B. & Faubel, M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 106, 1176–1211 (2006).$$v106$$y2006 000607622 999C5 $$1B Winter$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2008.12.108$$p139 -$$tNucl. Instrum. Methods Phys. Res. A$$uWinter, B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A 601, 139–150 (2009).$$v601$$y2009 000607622 999C5 $$1T Kachel$$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-2-75$$pA72 -$$tJLSRF$$uKachel, T. The plane grating monochromator beamline U49-2 PGM−1 at BESSY II. J. Large-Scale Res. Facil. JLSRF 2, A72 (2016).$$v2$$y2016 000607622 999C5 $$1J Viefhaus$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2012.10.110$$p151 -$$tNucl. Instrum. Methods Phys. Res. A$$uViefhaus, J. et al. The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res. A 710, 151–154 (2013).$$v710$$y2013 000607622 999C5 $$1M Mucke$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4729256$$p063106 -$$tRev. Sci. Instrum.$$uMucke, M., Lischke, T., Arion, T., Bradshaw, A. M. & Hergenhahn, U. Performance of a short “magnetic bottle” electron spectrometer. Rev. Sci. Instrum. 83, 063106 (2012).$$v83$$y2012 000607622 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.10910949$$uBloß, D. et al. X-ray radiation damage cycle of solvated inorganic ions. Zenodo https://doi.org/10.5281/zenodo.10910949 (2024).