001     607553
005     20250723171750.0
024 7 _ |a 10.1038/s41598-024-61746-4
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01925
|2 datacite_doi
024 7 _ |a altmetric:163940715
|2 altmetric
024 7 _ |a pmid:38811688
|2 pmid
024 7 _ |a WOS:001235693100105
|2 WOS
024 7 _ |a openalex:W4399140171
|2 openalex
037 _ _ |a PUBDB-2024-01925
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Reichmann, Jakob
|0 P:(DE-H253)PIP1096575
|b 0
|e First author
245 _ _ |a 3D imaging of SARS-CoV-2 infected hamster lungs by X-ray phase contrast tomography enables drug testing
260 _ _ |a [London]
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719924785_435660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a X-ray Phase Contrast Tomography (XPCT) based on wavefield propagation has been established as a high resolution three-dimensional (3D) imaging modality, suitable to reconstruct the intricate structure of soft tissues, and the corresponding pathological alterations. However, for biomedical research, more is needed than 3D visualisation and rendering of the cytoarchitecture in a few selected cases. First, the throughput needs to be increased to cover a statistically relevant number of samples. Second, the cytoarchitecture has to be quantified in terms of morphometric parameters, independent of visual impression. Third, dimensionality reduction and classification are required for identification of effects and interpretation of results. To address these challenges, we here design and implement a novel integrated and high throughput XPCT imaging and analysis workflow for 3D histology, pathohistology and drug testing. Our approach uses semi-automated data acquisition, reconstruction and statistical quantification. We demonstrate its capability for the example of lung pathohistology in Covid-19. Using a small animal model, different Covid-19 drug candidates are administered after infection and tested in view of restoration of the physiological cytoarchitecture, specifically the alveolar morphology. To this end, we then use morphometric parameter determination followed by a dimensionality reduction and classification based on optimal transport. This approach allows efficient discrimination between physiological and pathological lung structure, thereby providing quantitative insights into the pathological progression and partial recovery due to drug treatment. Finally, we stress that the XPCT image chain implemented here only used synchrotron radiation for validation, while the data used for analysis was recorded with laboratory CT radiation, more easily accessible for pre-clinical research.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project 390729940 - EXC 2067: Multiscale Bioimaging: Von molekularen Maschinen zu Netzwerken erregbarer Zellen (390729940)
|0 G:(GEPRIS)390729940
|c 390729940
|x 1
536 _ _ |a SFB 1456 A03 - Dimensionalitätsreduktion und Regression im Wasserstein-Raum für quantitative 3D-Histologie (A03) (456837373)
|0 G:(GEPRIS)456837373
|c 456837373
|x 2
542 _ _ |i 2024-05-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-05-29
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to DataCite
693 _ _ |a PETRA III
|f PETRA Beamline P10
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P10-20150101
|6 EXP:(DE-H253)P-P10-20150101
|x 0
700 1 _ |a Sarrazin, Clement
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmale, Sebastian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Blaurock, Claudia
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Balkema-Buschmann, Anne
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schmitzer, Bernhard
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Salditt, Tim
|0 P:(DE-H253)PIP1007848
|b 6
|e Corresponding author
773 1 8 |a 10.1038/s41598-024-61746-4
|b Springer Science and Business Media LLC
|d 2024-05-29
|n 1
|p 12348
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-61746-4
|g Vol. 14, no. 1, p. 12348
|0 PERI:(DE-600)2615211-3
|n 1
|p 12348
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/607553/files/s41598-024-61746-4.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/607553/files/s41598-024-61746-4.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:607553
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1096575
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1007848
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts
999 C 5 |1 M Töpperwien
|y 2018
|2 Crossref
|u Töpperwien, M. 3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography. Göttingen Series in x-ray Physics ((Göttingen University Press, Göttingen, 2018).
|t 3d virtual histology of neuronal tissue by propagation-based x-ray phase-contrast tomography. Göttingen Series in x-ray Physics
999 C 5 |a 10.1073/pnas.1801678115
|9 -- missing cx lookup --
|1 M Töpperwien
|p 6940 -
|2 Crossref
|u Töpperwien, M., van der Meer, F., Stadelmann, C. & Salditt, T. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc. Natl. Acad. Sci. U.S.A. 115, 6940–6945. https://doi.org/10.1073/pnas.1801678115 (2018).
|t Proc. Natl. Acad. Sci. U.S.A.
|v 115
|y 2018
999 C 5 |a 10.7554/eLife.71359
|9 -- missing cx lookup --
|1 M Reichardt
|p 71359 -
|2 Crossref
|u Reichardt, M. et al. 3D virtual histopathology of cardiac tissue from Covid-19 patients based on phase-contrast X-ray tomography. Elife 10, 71359. https://doi.org/10.7554/eLife.71359 (2021).
|t Elife
|v 10
|y 2021
999 C 5 |a 10.1152/ajplung.00432.2020
|1 C Westöö
|9 -- missing cx lookup --
|2 Crossref
|u Westöö, C. et al. Distinct types of plexiform lesions identified by synchrotron-based phase-contrast micro-CT. American Journal of Physiology-Lung Cellular and Molecular Physiologyhttps://doi.org/10.1152/ajplung.00432.2020 (2021).
|t American Journal of Physiology-Lung Cellular and Molecular Physiology
|y 2021
999 C 5 |a 10.3389/fgstr.2023.1283052
|1 A Svetlove
|9 -- missing cx lookup --
|2 Crossref
|u Svetlove, A. et al. X-ray phase-contrast 3D virtual histology characterises complex tissue architecture in colorectal cancer. Frontiers in Gastroenterologyhttps://doi.org/10.3389/fgstr.2023.1283052 (2023).
|t Frontiers in Gastroenterology
|y 2023
999 C 5 |a 10.1016/j.ijrobp.2021.10.009
|9 -- missing cx lookup --
|1 M Romano
|p 818 -
|2 Crossref
|u Romano, M. et al. X-ray phase contrast 3D virtual histology: evaluation of lung alterations after microbeam irradiation. Int. J. Radiat. Oncol. Biol. Phys. 112, 818–830. https://doi.org/10.1016/j.ijrobp.2021.10.009 (2022).
|t Int. J. Radiat. Oncol. Biol. Phys.
|v 112
|y 2022
999 C 5 |a 10.1038/s41598-018-29344-3
|9 -- missing cx lookup --
|1 W Vågberg
|p 11014 -
|2 Crossref
|u Vågberg, W., Persson, J., Szekely, L. & Hertz, H. M. Cellular-resolution 3D virtual histology of human coronary arteries using x-ray phase tomography. Sci. Rep. 8, 11014. https://doi.org/10.1038/s41598-018-29344-3 (2018).
|t Sci. Rep.
|v 8
|y 2018
999 C 5 |a 10.1101/2021.03.25.436908
|1 M Chourrout
|9 -- missing cx lookup --
|2 Crossref
|u Chourrout, M. et al. Brain virtual histology with X-ray phase-contrast tomography Part II: 3D morphologies of amyloid-beta plaques in Alzheimer’s disease models. Biomed. Opt. Expresshttps://doi.org/10.1101/2021.03.25.436908 (2021).
|t Biomed. Opt. Express
|y 2021
999 C 5 |a 10.1109/TMI.2018.2845905
|9 -- missing cx lookup --
|1 P Baran
|p 2642 -
|2 Crossref
|u Baran, P. et al. High-resolution X-ray phase-contrast 3-D imaging of breast tissue specimens as a possible adjunct to histopathology. IEEE Trans. Med. Imaging 37, 2642–2650. https://doi.org/10.1109/TMI.2018.2845905 (2018).
|t IEEE Trans. Med. Imaging
|v 37
|y 2018
999 C 5 |a 10.1111/j.1469-7580.2008.00950.x
|9 -- missing cx lookup --
|1 DW Parsons
|p 217 -
|2 Crossref
|u Parsons, D. W. et al. High-resolution visualization of airspace structures in intact mice via synchrotron phase-contrast X-ray imaging (PCXI). J. Anat. 213, 217–227. https://doi.org/10.1111/j.1469-7580.2008.00950.x (2008).
|t J. Anat.
|v 213
|y 2008
999 C 5 |a 10.1088/1361-6560/ac934d
|1 DW O’Connell
|9 -- missing cx lookup --
|2 Crossref
|u O’Connell, D. W. et al. Accurate measures of changes in regional lung air volumes from chest x-rays of small animals. Physics in Medicine & Biology 67, 205002. https://doi.org/10.1088/1361-6560/ac934d (2022).
|t Physics in Medicine & Biology
|v 67
|y 2022
999 C 5 |a 10.1007/s00418-020-01868-8
|9 -- missing cx lookup --
|1 E Borisova
|p 215 -
|2 Crossref
|u Borisova, E. et al. Micrometer-resolution X-ray tomographic full-volume reconstruction of an intact post-mortem juvenile rat lung. Histochem. Cell Biol. 155, 215–226. https://doi.org/10.1007/s00418-020-01868-8 (2021).
|t Histochem. Cell Biol.
|v 155
|y 2021
999 C 5 |a 10.1038/srep29438
|9 -- missing cx lookup --
|1 CS Stahr
|p 29438 -
|2 Crossref
|u Stahr, C. S. et al. Quantification of heterogeneity in lung disease with image-based pulmonary function testing. Sci. Rep. 6, 29438. https://doi.org/10.1038/srep29438 (2016).
|t Sci. Rep.
|v 6
|y 2016
999 C 5 |a 10.1364/BOE.5.004024
|9 -- missing cx lookup --
|1 AFT Leong
|p 4024 -
|2 Crossref
|u Leong, A. F. T. et al. Real-time measurement of alveolar size and population using phase contrast x-ray imaging. Biomed. Opt. Express 5, 4024–4038. https://doi.org/10.1364/BOE.5.004024 (2014).
|t Biomed. Opt. Express
|v 5
|y 2014
999 C 5 |a 10.1107/S1600577519014863
|9 -- missing cx lookup --
|1 KS Morgan
|p 164 -
|2 Crossref
|u Morgan, K. S. et al. Methods for dynamic synchrotron X-ray respiratory imaging in live animals. J. Synchrotron Radiat. 27, 164–175. https://doi.org/10.1107/S1600577519014863 (2020).
|t J. Synchrotron Radiat.
|v 27
|y 2020
999 C 5 |a 10.1016/j.ejmp.2020.10.001
|9 -- missing cx lookup --
|1 S Bayat
|p 22 -
|2 Crossref
|u Bayat, S., Porra, L., Suortti, P. & Thomlinson, W. Functional lung imaging with synchrotron radiation: Methods and preclinical applications. Physica Medica: European Journal of Medical Physics 79, 22–35. https://doi.org/10.1016/j.ejmp.2020.10.001 (2020).
|t Physica Medica: European Journal of Medical Physics
|v 79
|y 2020
999 C 5 |a 10.1183/13993003.congress-2022.1741
|1 S Bayat
|9 -- missing cx lookup --
|2 Crossref
|u Bayat, S., Cercos, J., Fardin, L., Perchiazzi, G. & Bravin, A. Pulmonary vascular biomechanics imaged with synchrotron phase contrast microtomography in live rats. Eur. Respir. J.https://doi.org/10.1183/13993003.congress-2022.1741 (2022).
|t Eur. Respir. J.
|y 2022
999 C 5 |a 10.1038/s42005-021-00760-8
|9 -- missing cx lookup --
|1 K Shaker
|p 259 -
|2 Crossref
|u Shaker, K., Häggmark, I., Reichmann, J., Arsenian-Henriksson, M. & Hertz, H. M. Phase-contrast X-ray tomography resolves the terminal bronchioles in free-breathing mice. Communications Physics 4, 259. https://doi.org/10.1038/s42005-021-00760-8 (2021).
|t Communications Physics
|v 4
|y 2021
999 C 5 |a 10.3389/fphys.2022.825433
|1 S Bayat
|9 -- missing cx lookup --
|2 Crossref
|u Bayat, S., Fardin, L., Cercos-Pita, J. L., Perchiazzi, G. & Bravin, A. Imaging regional lung structure and function in small animals using synchrotron radiation phase-contrast and k-edge subtraction computed tomography. Front. Physiol. 13, 825433 (2022).
|t Front. Physiol.
|v 13
|y 2022
999 C 5 |a 10.7554/eLife.60408
|1 M Eckermann
|9 -- missing cx lookup --
|2 Crossref
|u Eckermann, M. et al. 3D virtual pathohistology of lung tissue from Covid-19 patients based on phase contrast X-ray tomography. Elife 9, e60408. https://doi.org/10.7554/eLife.60408 (2020).
|t Elife
|v 9
|y 2020
999 C 5 |a 10.1158/0008-5472.CAN-17-0339
|9 -- missing cx lookup --
|1 JJ van Griethuysen
|p e104 -
|2 Crossref
|u van Griethuysen, J. J. et al. Computational Radiomics System to Decode the Radiographic Phenotype. Can. Res. 77, e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339 (2017).
|t Can. Res.
|v 77
|y 2017
999 C 5 |a 10.1371/journal.pone.0183979
|1 G Lovric
|9 -- missing cx lookup --
|2 Crossref
|u Lovric, G. et al. Automated computer-assisted quantitative analysis of intact murine lungs at the alveolar scale. PLoS ONE 12, e0183979. https://doi.org/10.1371/journal.pone.0183979 (2017).
|t PLoS ONE
|v 12
|y 2017
999 C 5 |a 10.1016/j.mri.2012.06.010
|9 -- missing cx lookup --
|1 V Kumar
|p 1234 -
|2 Crossref
|u Kumar, V. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234–1248. https://doi.org/10.1016/j.mri.2012.06.010 (2012).
|t Magn. Reson. Imaging
|v 30
|y 2012
999 C 5 |a 10.1016/j.ejca.2011.11.036
|9 -- missing cx lookup --
|1 P Lambin
|p 441 -
|2 Crossref
|u Lambin, P. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446. https://doi.org/10.1016/j.ejca.2011.11.036 (2012).
|t Eur. J. Cancer
|v 48
|y 2012
999 C 5 |a 10.1561/2200000073
|9 -- missing cx lookup --
|1 G Peyré
|p 355 -
|2 Crossref
|u Peyré, G. & Cuturi, M. Computational Optimal Transport. Foundations and Trends in Machine Learning 11(5–6), 355–602 (2019).
|t Foundations and Trends in Machine Learning
|v 11
|y 2019
999 C 5 |a 10.1016/j.neuroimage.2021.118250
|1 S Foxley
|9 -- missing cx lookup --
|2 Crossref
|u Foxley, S. et al. Multi-modal imaging of a single mouse brain over five orders of magnitude of resolution. Neuroimage 238, 118250. https://doi.org/10.1016/j.neuroimage.2021.118250 (2021).
|t Neuroimage
|v 238
|y 2021
999 C 5 |a 10.1023/B:VISI.0000036836.66311.97
|9 -- missing cx lookup --
|1 S Haker
|p 225 -
|2 Crossref
|u Haker, S., Zhu, L., Tannenbaum, A. & Angenent, S. Optimal Mass Transport for Registration and Warping. Int. J. Comput. Vision 60, 225–240. https://doi.org/10.1023/B:VISI.0000036836.66311.97 (2004).
|t Int. J. Comput. Vision
|v 60
|y 2004
999 C 5 |a 10.1007/978-3-319-18461-6_21
|9 -- missing cx lookup --
|2 Crossref
|u Rabin, J. & Papadakis, N. Convex color image segmentation with optimal transport distances (2015). ArXiv:1503.01986 [cs].
999 C 5 |a 10.1016/j.fmre.2023.06.006
|1 Y Guo
|9 -- missing cx lookup --
|2 Crossref
|u Guo, Y., Wang, X., Li, C. & Ying, S. Domain adaptive semantic segmentation by optimal transport. Fundamental Researchhttps://doi.org/10.1016/j.fmre.2023.06.006 (2023).
|t Fundamental Research
|y 2023
999 C 5 |a 10.1007/978-3-642-40395-8_10
|9 -- missing cx lookup --
|2 Crossref
|u Schmitzer, B. & Schnörr, C. Object Segmentation by Shape Matching with Wasserstein Modes. In Heyden, A., Kahl, F., Olsson, C., Oskarsson, M. & Tai, X.-C. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 123–136, https://doi.org/10.1007/978-3-642-40395-8_10 (Springer, Berlin, Heidelberg, 2013).
999 C 5 |2 Crossref
|u Crook, O. M. et al. A Linear Transportation Lp Distance for Pattern Recognition (2020). ArXiv:2009.11262 [cs, math].
999 C 5 |a 10.1109/IGARSS.2016.7729925
|9 -- missing cx lookup --
|2 Crossref
|u Courty, N., Flamary, R., Tuia, D. & Corpetti, T. Optimal transport for data fusion in remote sensing. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3571–3574,https://doi.org/10.1109/IGARSS.2016.7729925 (2016). ISSN: 2153-7003.
999 C 5 |a 10.1038/s41586-020-2787-6
|9 -- missing cx lookup --
|1 C Muñoz-Fontela
|p 509 -
|2 Crossref
|u Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515. https://doi.org/10.1038/s41586-020-2787-6 (2020).
|t Nature
|v 586
|y 2020
999 C 5 |a 10.1038/s41598-022-19222-4
|9 -- missing cx lookup --
|1 C Blaurock
|p 15069 -
|2 Crossref
|u Blaurock, C. et al. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci. Rep. 12, 15069. https://doi.org/10.1038/s41598-022-19222-4 (2022).
|t Sci. Rep.
|v 12
|y 2022
999 C 5 |a 10.1038/s41586-020-2196-x
|9 -- missing cx lookup --
|1 R Wölfel
|p 465 -
|2 Crossref
|u Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469. https://doi.org/10.1038/s41586-020-2196-x (2020).
|t Nature
|v 581
|y 2020
999 C 5 |a 10.1088/1361-6560/acd48d
|1 J Reichmann
|9 -- missing cx lookup --
|2 Crossref
|u Reichmann, J. et al. Human lung virtual histology by multi-scale x-ray phase-contrast computed tomography. Physics in Medicine & Biology 68, 115014. https://doi.org/10.1088/1361-6560/acd48d (2023).
|t Physics in Medicine & Biology
|v 68
|y 2023
999 C 5 |a 10.1046/j.1365-2818.2002.01010.x
|9 -- missing cx lookup --
|1 D Paganin
|p 33 -
|2 Crossref
|u Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x (2002).
|t J. Microsc.
|v 206
|y 2002
999 C 5 |a 10.1107/S1600577520011327
|9 -- missing cx lookup --
|1 J Frohn
|p 1707 -
|2 Crossref
|u Frohn, J. et al. 3D virtual histology of human pancreatic tissue by multiscale phase-contrast X-ray tomography. J. Synchrotron Radiat. 27, 1707–1719. https://doi.org/10.1107/S1600577520011327 (2020).
|t J. Synchrotron Radiat.
|v 27
|y 2020
999 C 5 |a 10.1063/1.125225
|9 -- missing cx lookup --
|1 P Cloetens
|p 2912 -
|2 Crossref
|u Cloetens, P. et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75, 2912–2914. https://doi.org/10.1063/1.125225 (1999).
|t Appl. Phys. Lett.
|v 75
|y 1999
999 C 5 |a 10.1107/S1600577520002398
|1 L Lohse
|9 -- missing cx lookup --
|2 Crossref
|u Lohse, L. et al. A phase-retrieval toolbox for X-ray holography and tomography. J. Synchrotron Radiat.https://doi.org/10.1107/S1600577520002398 (2020).
|t J. Synchrotron Radiat.
|y 2020
999 C 5 |a 10.1364/OE.26.011110
|9 -- missing cx lookup --
|1 B Yu
|p 11110 -
|2 Crossref
|u Yu, B. et al. Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue. Opt. Express 26, 11110–11124. https://doi.org/10.1364/OE.26.011110 (2018).
|t Opt. Express
|v 26
|y 2018
999 C 5 |a 10.1016/j.ultramic.2015.05.002
|9 -- missing cx lookup --
|1 W van Aarle
|p 35 -
|2 Crossref
|u van Aarle, W. et al. The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47. https://doi.org/10.1016/j.ultramic.2015.05.002 (2015).
|t Ultramicroscopy
|v 157
|y 2015
999 C 5 |a 10.1016/j.nimb.2013.09.030
|9 -- missing cx lookup --
|1 A Mirone
|p 41 -
|2 Crossref
|u Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res., Sect. B 324, 41–48. https://doi.org/10.1016/j.nimb.2013.09.030 (2014).
|t Nucl. Instrum. Methods Phys. Res., Sect. B
|v 324
|y 2014
999 C 5 |a 10.1152/japplphysiol.01100.2009
|9 -- missing cx lookup --
|1 L Knudsen
|p 412 -
|2 Crossref
|u Knudsen, L., Weibel, E. R., Gundersen, H. J. G., Weinstein, F. V. & Ochs, M. Assessment of air space size characteristics by intercept (chord) measurement: An accurate and efficient stereological approach. J. Appl. Physiol. 108, 412–421. https://doi.org/10.1152/japplphysiol.01100.2009 (2010).
|t J. Appl. Physiol.
|v 108
|y 2010
999 C 5 |a 10.1002/ceat.201600523
|9 -- missing cx lookup --
|1 MR MacIver
|p 2305 -
|2 Crossref
|u MacIver, M. R. & Pawlik, M. Analysis of in situ microscopy images of flocculated sediment volumes. Chemical Engineering & Technology 40, 2305–2313. https://doi.org/10.1002/ceat.201600523 (2017).
|t Chemical Engineering & Technology
|v 40
|y 2017
999 C 5 |a 10.1063/1.464812
|9 -- missing cx lookup --
|1 B Lu
|p 6472 -
|2 Crossref
|u Lu, B. & Torquato, S. Chord-length and free-path distribution functions for many-body systems. J. Chem. Phys. 98, 6472–6482. https://doi.org/10.1063/1.464812 (1993).
|t J. Chem. Phys.
|v 98
|y 1993
999 C 5 |a 10.1109/TSMC.1979.4310076
|9 -- missing cx lookup --
|1 N Otsu
|p 62 -
|2 Crossref
|u Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076 (1979).
|t IEEE Trans. Syst. Man Cybern.
|v 9
|y 1979
999 C 5 |a 10.1147/sj.41.0025
|9 -- missing cx lookup --
|1 JE Bresenham
|p 25 -
|2 Crossref
|u Bresenham, J. E. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 25–30. https://doi.org/10.1147/sj.41.0025 (1965).
|t IBM Syst. J.
|v 4
|y 1965
999 C 5 |2 Crossref
|u MacIver, M. R. Chord Length Distribution from Binary 2D Images (2023).
999 C 5 |a 10.1016/j.matchar.2020.110182
|1 S-Y Chung
|9 -- missing cx lookup --
|2 Crossref
|u Chung, S.-Y., Sikora, P., Rucińska, T., Stephan, D. & Abd Elrahman, M. Comparison of the pore size distributions of concretes with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 162, 110182. https://doi.org/10.1016/j.matchar.2020.110182 (2020).
|t Mater. Charact.
|v 162
|y 2020
999 C 5 |a 10.1088/0965-0393/24/7/075002
|1 DM Turner
|9 -- missing cx lookup --
|2 Crossref
|u Turner, D. M., Niezgoda, S. R. & Kalidindi, S. R. Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Modell. Simul. Mater. Sci. Eng. 24, 075002. https://doi.org/10.1088/0965-0393/24/7/075002 (2016).
|t Modell. Simul. Mater. Sci. Eng.
|v 24
|y 2016
999 C 5 |a 10.1016/j.matchar.2018.09.020
|9 -- missing cx lookup --
|1 MI Latypov
|p 671 -
|2 Crossref
|u Latypov, M. I. et al. Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Mater. Charact. 145, 671–685. https://doi.org/10.1016/j.matchar.2018.09.020 (2018).
|t Mater. Charact.
|v 145
|y 2018
999 C 5 |a 10.1186/s12890-019-0915-6
|9 -- missing cx lookup --
|1 G Crowley
|p 206 -
|2 Crossref
|u Crowley, G. et al. Quantitative lung morphology: semi-automated measurement of mean linear intercept. BMC Pulm. Med. 19, 206. https://doi.org/10.1186/s12890-019-0915-6 (2019).
|t BMC Pulm. Med.
|v 19
|y 2019
999 C 5 |a 10.1007/978-3-319-20828-2
|1 F Santambrogio
|y 2015
|2 Crossref
|u Santambrogio, F. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling (Birkhäuser (Google-Books-ID, UOHHCgAAQBAJ, 2015).
|9 -- missing cx lookup --
999 C 5 |a 10.1109/MSP.2017.2695801
|9 -- missing cx lookup --
|1 S Kolouri
|p 43 -
|2 Crossref
|u Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D. & Rohde, G. K. Optimal Mass Transport: Signal processing and machine-learning applications. IEEE Signal Process. Mag. 34, 43–59. https://doi.org/10.1109/MSP.2017.2695801 (2017).
|t IEEE Signal Process. Mag.
|v 34
|y 2017
999 C 5 |a 10.1109/CVPR.2018.00820
|9 -- missing cx lookup --
|2 Crossref
|u Park, S. & Thorpe, M. Representing and Learning High Dimensional Data with the Optimal Transport Map from a Probabilistic Viewpoint. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7864–7872, https://doi.org/10.1109/CVPR.2018.00820 (IEEE, Salt Lake City, UT, 2018).
999 C 5 |a 10.1038/s41592-019-0686-2
|9 -- missing cx lookup --
|1 P Virtanen
|p 261 -
|2 Crossref
|u Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2 (2020).
|t Nat. Methods
|v 17
|y 2020
999 C 5 |a 10.1007/s11263-012-0566-z
|9 -- missing cx lookup --
|1 W Wang
|p 254 -
|2 Crossref
|u Wang, W., Slepčev, D., Basu, S., Ozolek, J. A. & Rohde, G. K. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. Int. J. Comput. Vision 101, 254–269. https://doi.org/10.1007/s11263-012-0566-z (2013).
|t Int. J. Comput. Vision
|v 101
|y 2013
999 C 5 |a 10.1101/2022.10.07.22280811
|1 J Frost
|9 -- missing cx lookup --
|2 Crossref
|u Frost, J. et al. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Pathologyhttps://doi.org/10.1101/2022.10.07.22280811 (2023).
|t Pathology
|y 2023
999 C 5 |1 AR Kennedy
|y 1978
|2 Crossref
|u Kennedy, A. R., Desrosiers, A., Terzaghi, M. & Little, J. B. Morphometric and histological analysis of the lungs of Syrian golden hamsters. J. Anat. 125, 527–553 (1978).
999 C 5 |a 10.1007/BF00994018
|9 -- missing cx lookup --
|1 C Cortes
|p 273 -
|2 Crossref
|u Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297. https://doi.org/10.1007/BF00994018 (1995).
|t Mach. Learn.
|v 20
|y 1995


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21