001     607321
005     20250716133926.0
024 7 _ |a arXiv:2211.05238
|2 arXiv
024 7 _ |a 10.1007/s10107-024-02095-y
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01832
|2 datacite_doi
024 7 _ |a WOS:001236090900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4399245233
037 _ _ |a PUBDB-2024-01832
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Bungert, Leon
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Polarized consensus-based dynamics for optimization and sampling
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748850558_1058765
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a L:MB
520 _ _ |a In this paper we propose polarized consensus-based dynamics in order to make consensus-based optimization (CBO) and sampling (CBS) applicable for objective functions with several global minima or distributions with many modes, respectively. For this, we ``polarize'' the dynamics with a localizing kernel and the resulting model can be viewed as a bounded confidence model for opinion formation in the presence of common objective. Instead of being attracted to a common weighted mean as in the original consensus-based methods, which prevents the detection of more than one minimum or mode, in our method every particle is attracted to a weighted mean which gives more weight to nearby particles. We prove that in the mean-field regime the polarized CBS dynamics are unbiased for Gaussian targets. We also prove that in the zero temperature limit and for sufficiently well-behaved strongly convex objectives the solution of the Fokker--Planck equation converges in the Wasserstein-2 distance to a Dirac measure at the minimizer. Finally, we propose a computationally more efficient generalization which works with a predefined number of clusters and improves upon our polarized baseline method for high-dimensional optimization.
536 _ _ |a 623 - Data Management and Analysis (POF4-623)
|0 G:(DE-HGF)POF4-623
|c POF4-623
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390685689 - EXC 2046: MATH+: Berlin Mathematics Research Center (390685689)
|0 G:(GEPRIS)390685689
|c 390685689
|x 1
536 _ _ |a 05M20WEA - Verbundprojekt 05M2020 - DELETO: Maschinelles Lernen bei korrelativer MR und Hochdurchsatz-NanoCT. Teilvorhaben 3: Gelernte Regularisierungsmethoden und lernbasierte Verfahren für korrelatives MR. (BMBF-05M20WEA)
|0 G:(DE-Ds200)BMBF-05M20WEA
|c BMBF-05M20WEA
|f 05M20WEA
|x 2
536 _ _ |a NoMADS - Nonlocal Methods for Arbitrary Data Sources (777826)
|0 G:(EU-Grant)777826
|c 777826
|f H2020-MSCA-RISE-2017
|x 3
588 _ _ |a Dataset connected to arXivarXiv
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Roith, Tim
|0 P:(DE-H253)PIP1106486
|b 1
|e Corresponding author
700 1 _ |a Wacker, Philipp
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1007/s10107-024-02095-y
|g Vol. 211, no. 1-2, p. 125 - 155
|0 PERI:(DE-600)1463397-8
|p 125 - 155
|t Mathematical programming
|v 21
|y 2024
|x 0025-5610
856 4 _ |u https://bib-pubdb1.desy.de/record/607321/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/607321/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/607321/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/607321/files/PolarCBOInternalReview.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/607321/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/607321/files/PolarCBOInternalReview.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/607321/files/s10107-024-02095-y.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/607321/files/s10107-024-02095-y.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:607321
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1106486
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1106486
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-623
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Data Management and Analysis
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATH PROGRAM : 2022
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-CI-20230420
|k FS-CI
|l Computational Imaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CI-20230420
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21