Home > Publications database > Polarized consensus-based dynamics for optimization and sampling > print |
001 | 607321 | ||
005 | 20250716133926.0 | ||
024 | 7 | _ | |a arXiv:2211.05238 |2 arXiv |
024 | 7 | _ | |a 10.1007/s10107-024-02095-y |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01832 |2 datacite_doi |
024 | 7 | _ | |a WOS:001236090900001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4399245233 |
037 | _ | _ | |a PUBDB-2024-01832 |
041 | _ | _ | |a English |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Bungert, Leon |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Polarized consensus-based dynamics for optimization and sampling |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1748850558_1058765 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a L:MB |
520 | _ | _ | |a In this paper we propose polarized consensus-based dynamics in order to make consensus-based optimization (CBO) and sampling (CBS) applicable for objective functions with several global minima or distributions with many modes, respectively. For this, we ``polarize'' the dynamics with a localizing kernel and the resulting model can be viewed as a bounded confidence model for opinion formation in the presence of common objective. Instead of being attracted to a common weighted mean as in the original consensus-based methods, which prevents the detection of more than one minimum or mode, in our method every particle is attracted to a weighted mean which gives more weight to nearby particles. We prove that in the mean-field regime the polarized CBS dynamics are unbiased for Gaussian targets. We also prove that in the zero temperature limit and for sufficiently well-behaved strongly convex objectives the solution of the Fokker--Planck equation converges in the Wasserstein-2 distance to a Dirac measure at the minimizer. Finally, we propose a computationally more efficient generalization which works with a predefined number of clusters and improves upon our polarized baseline method for high-dimensional optimization. |
536 | _ | _ | |a 623 - Data Management and Analysis (POF4-623) |0 G:(DE-HGF)POF4-623 |c POF4-623 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390685689 - EXC 2046: MATH+: Berlin Mathematics Research Center (390685689) |0 G:(GEPRIS)390685689 |c 390685689 |x 1 |
536 | _ | _ | |a 05M20WEA - Verbundprojekt 05M2020 - DELETO: Maschinelles Lernen bei korrelativer MR und Hochdurchsatz-NanoCT. Teilvorhaben 3: Gelernte Regularisierungsmethoden und lernbasierte Verfahren für korrelatives MR. (BMBF-05M20WEA) |0 G:(DE-Ds200)BMBF-05M20WEA |c BMBF-05M20WEA |f 05M20WEA |x 2 |
536 | _ | _ | |a NoMADS - Nonlocal Methods for Arbitrary Data Sources (777826) |0 G:(EU-Grant)777826 |c 777826 |f H2020-MSCA-RISE-2017 |x 3 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Roith, Tim |0 P:(DE-H253)PIP1106486 |b 1 |e Corresponding author |
700 | 1 | _ | |a Wacker, Philipp |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.1007/s10107-024-02095-y |g Vol. 211, no. 1-2, p. 125 - 155 |0 PERI:(DE-600)1463397-8 |p 125 - 155 |t Mathematical programming |v 21 |y 2024 |x 0025-5610 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607321/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607321/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607321/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607321/files/PolarCBOInternalReview.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/607321/files/Article%20Approval%20Service.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/607321/files/PolarCBOInternalReview.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/607321/files/s10107-024-02095-y.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/607321/files/s10107-024-02095-y.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:607321 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1106486 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1106486 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-623 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Data Management and Analysis |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATH PROGRAM : 2022 |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2024-12-20 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-CI-20230420 |k FS-CI |l Computational Imaging |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CI-20230420 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|