001     607315
005     20250715151506.0
024 7 _ |a Blekman:2024wyf
|2 INSPIRETeX
024 7 _ |a inspire:2797728
|2 inspire
024 7 _ |a arXiv:2406.08590
|2 arXiv
024 7 _ |a 10.1140/epjc/s10052-025-13785-y
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01826
|2 datacite_doi
024 7 _ |a altmetric:164530546
|2 altmetric
024 7 _ |a pmid:39935486
|2 pmid
024 7 _ |a WOS:001416920500001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4407288206
037 _ _ |a PUBDB-2024-01826
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a DESY-24-086
|2 DESY
088 _ _ |a arXiv:2406.08590
|2 arXiv
100 1 _ |a Blekman, Freya
|0 P:(DE-H253)PIP1097620
|b 0
245 _ _ |a Tagging more quark jet flavours at FCC-ee at 91 GeV with a transformer-based neural network
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748344240_495676
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Jet flavour tagging is crucial in experimental high-energy physics. A tagging algorithm, \texttt{DeepJetTransformer}, is presented, which exploits a transformer-based neural network that is substantially faster to train. The \texttt{DeepJetTransformer} network uses information from particle flow-style objects and secondary vertex reconstruction as is standard for $b$- and $c$-jet identification supplemented by additional information, such as reconstructed V$^0$s and $K^{\pm}/\pi^{\pm}$ discrimination, typically not included in tagging algorithms at the LHC. The model is trained as a multiclassifier to identify all quark flavours separately and performs excellently in identifying $b$- and $c$-jets. An $s$-tagging efficiency of $40\%$ can be achieved with a $10\%$$ud$-jet background efficiency. The impact of including V$^0$s and $K^{\pm}/\pi^{\pm}$ discrimination is presented. The network is applied on exclusive $Z \to q\bar{q}$ samples to examine the physics potential and is shown to isolate $Z \to s\bar{s}$ events. Assuming all other backgrounds can be efficiently rejected, a $5\sigma$ discovery significance for $Z \to s\bar{s}$ can be achieved with an integrated luminosity of $60~\text{nb}^{-1}$, corresponding to less than a second of the FCC-ee run plan at the $Z$ resonance.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a jet, flavor
|2 INSPIRE
650 _ 7 |a track data analysis, vertex
|2 INSPIRE
650 _ 7 |a vertex, secondary
|2 INSPIRE
650 _ 7 |a quark, flavor
|2 INSPIRE
650 _ 7 |a network
|2 INSPIRE
650 _ 7 |a efficiency
|2 INSPIRE
650 _ 7 |a FCC-ee
|2 INSPIRE
650 _ 7 |a background
|2 INSPIRE
650 _ 7 |a neural network
|2 INSPIRE
650 _ 7 |a CERN LHC Coll
|2 INSPIRE
693 _ _ |0 EXP:(DE-H253)FCC-20190101
|5 EXP:(DE-H253)FCC-20190101
|e Future Circular Collider
|x 0
700 1 _ |a Moor, De
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gautam, Kunal
|0 P:(DE-H253)PIP1104458
|b 2
|e Corresponding author
700 1 _ |a Ploerer, Eduardo
|0 P:(DE-H253)PIP1104457
|b 3
700 1 _ |a Ilg, Armin
|0 P:(DE-H253)PIP1108470
|b 4
700 1 _ |a Macchiolo, Anna
|0 P:(DE-H253)PIP1025156
|b 5
700 1 _ |a Canellli, Florencia
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1140/epjc/s10052-025-13785-y
|g Vol. 85, no. 2, p. 165
|0 PERI:(DE-600)1459069-4
|n 2
|p 165
|t The European physical journal / C
|v 85
|y 2024
|x 1434-6044
787 0 _ |a Blekman, Freya et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-07333
|r arXiv:2406.08590 ; DESY-24-086
|t Jet Flavour Tagging at FCC-ee with a Transformer-based Neural Network: DeepJetTransformer
856 4 _ |u https://arxiv.org/abs/2406.08590
856 4 _ |u https://bib-pubdb1.desy.de/record/607315/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/607315/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/607315/files/s10052-025-13785-y.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/607315/files/s10052-025-13785-y.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:607315
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1097620
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1097620
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1104458
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1104457
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1108470
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1025156
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:05:14Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2023-05-02T09:05:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
920 1 _ |0 I:(DE-H253)CMS-20120731
|k CMS
|l LHC/CMS Experiment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CMS-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21