Home > Publications database > Tagging more quark jet flavours at FCC-ee at 91 GeV with a transformer-based neural network > print |
001 | 607315 | ||
005 | 20250715151506.0 | ||
024 | 7 | _ | |a Blekman:2024wyf |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2797728 |2 inspire |
024 | 7 | _ | |a arXiv:2406.08590 |2 arXiv |
024 | 7 | _ | |a 10.1140/epjc/s10052-025-13785-y |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01826 |2 datacite_doi |
024 | 7 | _ | |a altmetric:164530546 |2 altmetric |
024 | 7 | _ | |a pmid:39935486 |2 pmid |
024 | 7 | _ | |a WOS:001416920500001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4407288206 |
037 | _ | _ | |a PUBDB-2024-01826 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a DESY-24-086 |2 DESY |
088 | _ | _ | |a arXiv:2406.08590 |2 arXiv |
100 | 1 | _ | |a Blekman, Freya |0 P:(DE-H253)PIP1097620 |b 0 |
245 | _ | _ | |a Tagging more quark jet flavours at FCC-ee at 91 GeV with a transformer-based neural network |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1748344240_495676 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Jet flavour tagging is crucial in experimental high-energy physics. A tagging algorithm, \texttt{DeepJetTransformer}, is presented, which exploits a transformer-based neural network that is substantially faster to train. The \texttt{DeepJetTransformer} network uses information from particle flow-style objects and secondary vertex reconstruction as is standard for $b$- and $c$-jet identification supplemented by additional information, such as reconstructed V$^0$s and $K^{\pm}/\pi^{\pm}$ discrimination, typically not included in tagging algorithms at the LHC. The model is trained as a multiclassifier to identify all quark flavours separately and performs excellently in identifying $b$- and $c$-jets. An $s$-tagging efficiency of $40\%$ can be achieved with a $10\%$$ud$-jet background efficiency. The impact of including V$^0$s and $K^{\pm}/\pi^{\pm}$ discrimination is presented. The network is applied on exclusive $Z \to q\bar{q}$ samples to examine the physics potential and is shown to isolate $Z \to s\bar{s}$ events. Assuming all other backgrounds can be efficiently rejected, a $5\sigma$ discovery significance for $Z \to s\bar{s}$ can be achieved with an integrated luminosity of $60~\text{nb}^{-1}$, corresponding to less than a second of the FCC-ee run plan at the $Z$ resonance. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306) |0 G:(GEPRIS)390833306 |c 390833306 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a jet, flavor |2 INSPIRE |
650 | _ | 7 | |a track data analysis, vertex |2 INSPIRE |
650 | _ | 7 | |a vertex, secondary |2 INSPIRE |
650 | _ | 7 | |a quark, flavor |2 INSPIRE |
650 | _ | 7 | |a network |2 INSPIRE |
650 | _ | 7 | |a efficiency |2 INSPIRE |
650 | _ | 7 | |a FCC-ee |2 INSPIRE |
650 | _ | 7 | |a background |2 INSPIRE |
650 | _ | 7 | |a neural network |2 INSPIRE |
650 | _ | 7 | |a CERN LHC Coll |2 INSPIRE |
693 | _ | _ | |0 EXP:(DE-H253)FCC-20190101 |5 EXP:(DE-H253)FCC-20190101 |e Future Circular Collider |x 0 |
700 | 1 | _ | |a Moor, De |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gautam, Kunal |0 P:(DE-H253)PIP1104458 |b 2 |e Corresponding author |
700 | 1 | _ | |a Ploerer, Eduardo |0 P:(DE-H253)PIP1104457 |b 3 |
700 | 1 | _ | |a Ilg, Armin |0 P:(DE-H253)PIP1108470 |b 4 |
700 | 1 | _ | |a Macchiolo, Anna |0 P:(DE-H253)PIP1025156 |b 5 |
700 | 1 | _ | |a Canellli, Florencia |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1140/epjc/s10052-025-13785-y |g Vol. 85, no. 2, p. 165 |0 PERI:(DE-600)1459069-4 |n 2 |p 165 |t The European physical journal / C |v 85 |y 2024 |x 1434-6044 |
787 | 0 | _ | |a Blekman, Freya et.al. |d 2024 |i IsParent |0 PUBDB-2024-07333 |r arXiv:2406.08590 ; DESY-24-086 |t Jet Flavour Tagging at FCC-ee with a Transformer-based Neural Network: DeepJetTransformer |
856 | 4 | _ | |u https://arxiv.org/abs/2406.08590 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607315/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607315/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607315/files/s10052-025-13785-y.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/607315/files/s10052-025-13785-y.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:607315 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1097620 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1097620 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1104458 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1104457 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1108470 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1025156 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2023-05-02T09:05:14Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J C : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)CMS-20120731 |k CMS |l LHC/CMS Experiment |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)CMS-20120731 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|