001     607018
005     20250221092211.0
020 _ _ |a 978-3-95450-247-9
024 7 _ |a 10.18429/JACOW-IPAC2024-TUPS60
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01723
|2 datacite_doi
037 _ _ |a PUBDB-2024-01723
041 _ _ |a English
100 1 _ |a Hirlaender, Simon
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 15th International Particle Accelerator Conference
|c Nashville
|d 2024-05-19 - 2024-05-24
|w USA
|g IPAC'24
245 _ _ |a Towards few-shot reinforcement learning in particle accelerator control
260 _ _ |a Geneva, Switzerland
|c 2024
|b JACoW Publishing
295 1 0 |a [Ebook] 15th International Particle Accelerator Conference, Nashville, Tennessee : May 19-24, 2024, Nashville, Tennessee, USA : proceedings / Pilat, Fulvia ; Andrian, Ivan , [Geneva] : JACoW Publishing, [2024],
300 _ _ |a 1804 - 1807
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1726213868_4150639
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a Literaturangaben;
520 _ _ |a This paper addresses the automation of particle accelerator control through reinforcement learning (RL). It highlights the potential to increase reliable performance, especially in light of new diagnostic tools and the increasingly complex variable schedules of specific accelerators. We focus on the physics simulation of the AWAKE electron line, an ideal platform for performing in-depth studies that allow a clear distinction between the problem and the performance of different algorithmic approaches for accurate analysis. The main challenges are the lack of realistic simulations and partially observable environments. We show how effective results can be achieved through meta-reinforcement learning, where an agent is trained to quickly adapt to specific real-world scenarios based on prior training in a simulated environment with variable unknowns. When suitable simulations are lacking or too costly, a model-based method using Gaussian processes is used for direct training in a few shots only. The work opens new avenues for implementing control automation in particle accelerators, significantly increasing their efficiency and adaptability.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Accelerator Physics
|2 Other
650 _ 7 |a mc6-beam-instrumentation-controls-feedback-and-operational-aspects - MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
|2 Other
650 _ 7 |a MC6.D13 - MC6.D13 Machine Learning
|2 Other
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Pochaba, Sabrina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lamminger, Lukas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 3
700 1 _ |a Xu, Chenran
|0 P:(DE-H253)PIP1093707
|b 4
700 1 _ |a Santamaria Garcia, Andrea
|0 P:(DE-H253)PIP1093488
|b 5
700 1 _ |a Scomparin, Luca
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.18429/JACOW-IPAC2024-TUPS60
856 4 _ |u https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups60/index.html
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/Main%20Document.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/Publisher%27s%20PDF.pdf
|y Restricted
|z StatID:(DE-HGF)0599
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/Main%20Document.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://bib-pubdb1.desy.de/record/607018/files/Publisher%27s%20PDF.pdf?subformat=pdfa
|x pdfa
|y Restricted
|z StatID:(DE-HGF)0599
909 C O |o oai:bib-pubdb1.desy.de:607018
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1095111
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1093707
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1093488
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)KIT-20130928
|k KIT
|l externe Institute im Bereich Photon Science
|x 1
920 1 _ |0 I:(DE-H253)CERN-20181204
|k CERN
|l CERN
|x 2
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)KIT-20130928
980 _ _ |a I:(DE-H253)CERN-20181204
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21