000607016 001__ 607016
000607016 005__ 20250221092210.0
000607016 020__ $$a978-3-95450-247-9
000607016 0247_ $$2doi$$a10.18429/JACOW-IPAC2024-TUPS62
000607016 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01721
000607016 037__ $$aPUBDB-2024-01721
000607016 041__ $$aEnglish
000607016 1001_ $$0P:(DE-H253)PIP1093488$$aSantamaria Garcia, Andrea$$b0$$eCorresponding author
000607016 1112_ $$a15th International Particle Accelerator Conference$$cNashville$$d2024-05-19 - 2024-05-24$$gIPAC'24$$wUSA
000607016 245__ $$aThe Reinforcement Learning for Autonomous Accelerators Collaboration
000607016 260__ $$aGeneva, Switzerland$$bJACoW Publishing$$c2024
000607016 29510 $$a[Ebook] 15th International Particle Accelerator Conference, Nashville, Tennessee : May 19-24, 2024, Nashville, Tennessee, USA : proceedings / Pilat, Fulvia ; Andrian, Ivan , [Geneva] : JACoW Publishing, [2024],
000607016 300__ $$a1812 - 1815 
000607016 3367_ $$2ORCID$$aCONFERENCE_PAPER
000607016 3367_ $$033$$2EndNote$$aConference Paper
000607016 3367_ $$2BibTeX$$aINPROCEEDINGS
000607016 3367_ $$2DRIVER$$aconferenceObject
000607016 3367_ $$2DataCite$$aOutput Types/Conference Paper
000607016 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1726213709_4157899
000607016 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000607016 500__ $$aLiteraturangaben;
000607016 520__ $$aReinforcement Learning (RL) is a unique learning paradigm that is particularly well-suited to tackle complex control tasks, can deal with delayed consequences, and can learn from experience without an explicit model of the dynamics of the problem. These properties make RL methods extremely promising for applications in particle accelerators, where the dynamically evolving conditions of both the particle beam and the accelerator systems must be constantly considered. While the time to work on RL is now particularly favorable thanks to the availability of high-level programming libraries and resources, its implementation in particle accelerators is not trivial and requires further consideration. In this context, the Reinforcement Learning for Autonomous Accelerators (RL4AA) international collaboration was established to consolidate existing knowledge, share experiences and ideas, and collaborate on accelerator-specific solutions that leverage recent advances in RL. Here we report on two collaboration workshops, RL4AA'23 and RL4AA'24, which took place in February 2023 at the Karlsruhe Institute of Technology and in February 2024 at the Paris-Lodron Universität Salzburg.
000607016 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000607016 588__ $$aDataset connected to DataCite
000607016 650_7 $$2Other$$aAccelerator Physics
000607016 650_7 $$2Other$$amc6-beam-instrumentation-controls-feedback-and-operational-aspects - MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
000607016 650_7 $$2Other$$aMC6.D13 - MC6.D13 Machine Learning
000607016 693__ $$0EXP:(DE-H253)ARES-20200101$$1EXP:(DE-H253)SINBAD-20200101$$5EXP:(DE-H253)ARES-20200101$$aSINBAD$$eAccelerator Research Experiment at SINBAD$$x0
000607016 7001_ $$0P:(DE-HGF)0$$aScomparin, Luca$$b1
000607016 7001_ $$0P:(DE-H253)PIP1093707$$aXu, Chenran$$b2
000607016 7001_ $$0P:(DE-HGF)0$$aHirlaender, Simon$$b3
000607016 7001_ $$0P:(DE-HGF)0$$aPochaba, Sabrina$$b4
000607016 7001_ $$0P:(DE-H253)PIP1087213$$aEichler, Annika$$b5
000607016 7001_ $$0P:(DE-H253)PIP1095111$$aKaiser, Jan$$b6
000607016 7001_ $$0P:(DE-HGF)0$$aSchenk, Michael$$b7
000607016 773__ $$a10.18429/JACOW-IPAC2024-TUPS62
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/HTML-Approval_of_scientific_publication.html
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/Main%20Document.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/PDF-Approval_of_scientific_publication.pdf
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/Publisher%27s%20PDF.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/Publisher%27s%20PDF.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000607016 8564_ $$uhttps://bib-pubdb1.desy.de/record/607016/files/Main%20Document.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000607016 909CO $$ooai:bib-pubdb1.desy.de:607016$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000607016 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093488$$aExternal Institute$$b0$$kExtern
000607016 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093707$$aExternal Institute$$b2$$kExtern
000607016 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087213$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000607016 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087213$$aEuropean XFEL$$b5$$kXFEL.EU
000607016 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095111$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000607016 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000607016 9141_ $$y2024
000607016 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000607016 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000607016 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x0
000607016 9201_ $$0I:(DE-H253)KIT-20130928$$kKIT$$lexterne Institute im Bereich Photon Science$$x1
000607016 980__ $$acontrib
000607016 980__ $$aVDB
000607016 980__ $$aUNRESTRICTED
000607016 980__ $$acontb
000607016 980__ $$aI:(DE-H253)MSK-20120731
000607016 980__ $$aI:(DE-H253)KIT-20130928
000607016 9801_ $$aFullTexts