001     606814
005     20241124103834.0
024 7 _ |a Kaiser:2024lkg
|2 INSPIRETeX
024 7 _ |a inspire:2787129
|2 inspire
024 7 _ |a arXiv:2405.08888
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2024-01644
|2 datacite_doi
037 _ _ |a PUBDB-2024-01644
041 _ _ |a English
088 _ _ |a arXiv:2405.08888
|2 arXiv
100 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 0
|e Corresponding author
|u desy
245 _ _ |a Large Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1730902587_2329278
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 22 pages, 5 figures
520 _ _ |a Autonomous tuning of particle accelerators is an active and challenging field of research with the goal of enabling novel accelerator technologies cutting-edge high-impact applications, such as physics discovery, cancer research and material sciences. A key challenge with autonomous accelerator tuning remains that the most capable algorithms require an expert in optimisation, machine learning or a similar field to implement the algorithm for every new tuning task. In this work, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to successfully and autonomously tune a particle accelerator subsystem based on nothing more than a natural language prompt from the operator, and compare the performance of our LLM-based solution to state-of-the-art optimisation algorithms, such as Bayesian optimisation (BO) and reinforcement learning-trained optimisation (RLO). In doing so, we also show how LLMs can perform numerical optimisation of a highly non-linear real-world objective function. Ultimately, this work represents yet another complex task that LLMs are capable of solving and promises to help accelerate the deployment of autonomous tuning algorithms to the day-to-day operations of particle accelerators.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 1
588 _ _ |a Dataset connected to INSPIRE
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 1
700 1 _ |a Lauscher, Anne
|0 P:(DE-HGF)0
|b 2
856 4 _ |u https://bib-pubdb1.desy.de/record/606814/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/606814/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/606814/files/2405.08888v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/606814/files/2405.08888v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:606814
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095111
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1087213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MSK-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21