000606814 001__ 606814
000606814 005__ 20241124103834.0
000606814 0247_ $$2INSPIRETeX$$aKaiser:2024lkg
000606814 0247_ $$2inspire$$ainspire:2787129
000606814 0247_ $$2arXiv$$aarXiv:2405.08888
000606814 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01644
000606814 037__ $$aPUBDB-2024-01644
000606814 041__ $$aEnglish
000606814 088__ $$2arXiv$$aarXiv:2405.08888
000606814 1001_ $$0P:(DE-H253)PIP1095111$$aKaiser, Jan$$b0$$eCorresponding author$$udesy
000606814 245__ $$aLarge Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language
000606814 260__ $$c2024
000606814 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1730902587_2329278
000606814 3367_ $$2ORCID$$aWORKING_PAPER
000606814 3367_ $$028$$2EndNote$$aElectronic Article
000606814 3367_ $$2DRIVER$$apreprint
000606814 3367_ $$2BibTeX$$aARTICLE
000606814 3367_ $$2DataCite$$aOutput Types/Working Paper
000606814 500__ $$a22 pages, 5 figures
000606814 520__ $$aAutonomous tuning of particle accelerators is an active and challenging field of research with the goal of enabling novel accelerator technologies cutting-edge high-impact applications, such as physics discovery, cancer research and material sciences. A key challenge with autonomous accelerator tuning remains that the most capable algorithms require an expert in optimisation, machine learning or a similar field to implement the algorithm for every new tuning task. In this work, we propose the use of large language models (LLMs) to tune particle accelerators. We demonstrate on a proof-of-principle example the ability of LLMs to successfully and autonomously tune a particle accelerator subsystem based on nothing more than a natural language prompt from the operator, and compare the performance of our LLM-based solution to state-of-the-art optimisation algorithms, such as Bayesian optimisation (BO) and reinforcement learning-trained optimisation (RLO). In doing so, we also show how LLMs can perform numerical optimisation of a highly non-linear real-world objective function. Ultimately, this work represents yet another complex task that LLMs are capable of solving and promises to help accelerate the deployment of autonomous tuning algorithms to the day-to-day operations of particle accelerators.
000606814 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000606814 536__ $$0G:(DE-HGF)2020_InternLabs-0011$$aInternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)$$c2020_InternLabs-0011$$x1
000606814 588__ $$aDataset connected to INSPIRE
000606814 693__ $$0EXP:(DE-H253)ARES-20200101$$1EXP:(DE-H253)SINBAD-20200101$$5EXP:(DE-H253)ARES-20200101$$aSINBAD$$eAccelerator Research Experiment at SINBAD$$x0
000606814 7001_ $$0P:(DE-H253)PIP1087213$$aEichler, Annika$$b1
000606814 7001_ $$0P:(DE-HGF)0$$aLauscher, Anne$$b2
000606814 8564_ $$uhttps://bib-pubdb1.desy.de/record/606814/files/HTML-Approval_of_scientific_publication.html
000606814 8564_ $$uhttps://bib-pubdb1.desy.de/record/606814/files/PDF-Approval_of_scientific_publication.pdf
000606814 8564_ $$uhttps://bib-pubdb1.desy.de/record/606814/files/2405.08888v1.pdf$$yOpenAccess
000606814 8564_ $$uhttps://bib-pubdb1.desy.de/record/606814/files/2405.08888v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000606814 909CO $$ooai:bib-pubdb1.desy.de:606814$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000606814 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095111$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000606814 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087213$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000606814 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087213$$aEuropean XFEL$$b1$$kXFEL.EU
000606814 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000606814 9141_ $$y2024
000606814 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000606814 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000606814 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000606814 9201_ $$0I:(DE-H253)MSK-20120731$$kMSK$$lStrahlkontrollen$$x0
000606814 980__ $$apreprint
000606814 980__ $$aVDB
000606814 980__ $$aUNRESTRICTED
000606814 980__ $$aI:(DE-H253)MSK-20120731
000606814 9801_ $$aFullTexts