Home > Publications database > Temperature dependence of THz generation efficiency, THz refractive index, and THz absorption in lithium-niobate around 275 GHz > print |
001 | 606464 | ||
005 | 20250723171728.0 | ||
024 | 7 | _ | |a 10.1364/OME.528491 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01599 |2 datacite_doi |
024 | 7 | _ | |a WOS:001266706400005 |2 WOS |
024 | 7 | _ | |a openalex:W4399786586 |2 openalex |
037 | _ | _ | |a PUBDB-2024-01599 |
041 | _ | _ | |a English |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Demirbas, Uemit |0 P:(DE-H253)PIP1032520 |b 0 |
245 | _ | _ | |a Temperature dependence of THz generation efficiency, THz refractive index, and THz absorption in lithium-niobate around 275 GHz |
260 | _ | _ | |a Washington, DC |c 2024 |b Optica |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1720699987_3708026 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We used pulse trains with 800-fs long pulses and adjustable time delay to investigate the temperature dependence of THz generation in a periodically pooled lithium niobate (PPLN) crystal with a poling period of 400 µm. By adjusting the PPLN temperature (78-350 K), multicycle, narrowband (sub-10 GHz) THz pulses with tunable central frequency in the 253-287 GHz range were obtained. Internal conversion efficiency values up to 0.45% were demonstrated at a peak fluence value of 150 mJ/cm2 at 78 K. Via scanning the incident pulse-train frequency, we measured the frequency response of the crystal at different temperatures, which enabled us to determine the temperature dependence of the refractive index and thermo-optic coefficient of the PPLN crystal around 275 GHz with very high precision. We further studied the variation of THz generation efficiency with temperature in detail to understand the temperature dependence of THz absorption in PPLN material. Here, we observed that it is difficult to isolate the temperature dependence of absorption with high accuracy from the THz efficiency data, as the efficiency depends on many other factors that could also be temperature-dependent. Overall, the results presented in this manuscript demonstrate the capability of the tunable-frequency pulse-train excitation approach in mapping fundamental properties of nonlinear crystals at relatively low THz frequencies, where other characterization methods, such as THz time-domain spectroscopy, have difficulties. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a AXSIS - Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (609920) |0 G:(EU-Grant)609920 |c 609920 |f ERC-2013-SyG |x 1 |
542 | _ | _ | |i 2024-06-27 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
542 | _ | _ | |i 2024-06-27 |2 Crossref |u https://opg.optica.org/policies/opg-tdm-policy.json |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e AXSIS: Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)AXSIS-20200101 |5 EXP:(DE-H253)AXSIS-20200101 |x 0 |
700 | 1 | _ | |a Rentschler, Christian |0 P:(DE-H253)PIP1097267 |b 1 |u desy |
700 | 1 | _ | |a Zhang, Zhelin |0 P:(DE-H253)PIP1094307 |b 2 |
700 | 1 | _ | |a Pergament, Mikhail |0 P:(DE-H253)PIP1014672 |b 3 |
700 | 1 | _ | |a Matlis, Nicholas |0 P:(DE-H253)PIP1026174 |b 4 |
700 | 1 | _ | |a Kärtner, Franz |0 P:(DE-H253)PIP1013198 |b 5 |e Corresponding author |
773 | 1 | 8 | |a 10.1364/ome.528491 |b Optica Publishing Group |d 2024-06-27 |n 7 |p 1886 |3 journal-article |2 Crossref |t Optical Materials Express |v 14 |y 2024 |x 2159-3930 |
773 | _ | _ | |a 10.1364/OME.528491 |g Vol. 14, no. 7, p. 1886 - |0 PERI:(DE-600)2619914-2 |n 7 |p 1886 |t Optical materials express |v 14 |y 2024 |x 2159-3930 |
856 | 4 | _ | |u https://opg.optica.org/ome/fulltext.cfm?uri=ome-14-7-1886&id=552866 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-26_KilincM_internalPaperReview.doc |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-26_KilincM_internalPaperReview.docx |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-26_KilincM_internalPaperReview.odt |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-26_KilincM_internalPaperReview.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-28_DemirbasU_OMEXpaperManuscript.doc |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-28_DemirbasU_OMEXpaperManuscript.docx |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-28_DemirbasU_OMEXpaperManuscript.odt |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/2024-04-28_DemirbasU_OMEXpaperManuscript.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/DemirbasU_OMEXpaper.pdf |y Restricted |z StatID:(DE-HGF)0599 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/606464/files/DemirbasU_OMEXpaper.pdf?subformat=pdfa |x pdfa |y Restricted |z StatID:(DE-HGF)0599 |
909 | C | O | |o oai:bib-pubdb1.desy.de:606464 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1032520 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1032520 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1097267 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1097267 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1094307 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1094307 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1014672 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 3 |6 P:(DE-H253)PIP1014672 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1026174 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 4 |6 P:(DE-H253)PIP1026174 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 5 |6 P:(DE-H253)PIP1013198 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1013198 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a TIB: Optica 01/01/2023 |0 PC:(DE-HGF)0123 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b OPT MATER EXPRESS : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-09-18T13:37:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-09-18T13:37:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-09-18T13:37:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-2-20120731 |k FS-CFEL-2 |l Ultrafast Lasers & X-rays Division |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-2-20120731 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1088/1361-6463/acbe4c |9 -- missing cx lookup -- |1 Leitenstorfer |p 223001 - |2 Crossref |t J. Phys. D: Appl. Phys. |v 56 |y 2023 |
999 | C | 5 | |a 10.1063/1.5080205 |9 -- missing cx lookup -- |1 Son |p 190901 - |2 Crossref |t J. Appl. Phys. |v 125 |y 2019 |
999 | C | 5 | |a 10.1038/s41467-022-35517-6 |9 -- missing cx lookup -- |1 Herter |p 11 - |2 Crossref |t Nat. Commun. |v 14 |y 2023 |
999 | C | 5 | |a 10.1364/OE.14.002263 |9 -- missing cx lookup -- |1 Vodopyanov |p 2263 - |2 Crossref |t Opt. Express |v 14 |y 2006 |
999 | C | 5 | |a 10.1002/adma.202208947 |9 -- missing cx lookup -- |1 Wu |p 2208947 - |2 Crossref |t Adv. Mater. |v 35 |y 2023 |
999 | C | 5 | |a 10.1364/OE.457773 |9 -- missing cx lookup -- |1 Kroh |p 24186 - |2 Crossref |t Opt. Express |v 30 |y 2022 |
999 | C | 5 | |a 10.1002/lpor.202000295 |9 -- missing cx lookup -- |1 Zhang |p 2000295 - |2 Crossref |t Laser Photon. Rev. |v 15 |y 2021 |
999 | C | 5 | |a 10.1364/OL.38.005373 |9 -- missing cx lookup -- |1 Vicario |p 5373 - |2 Crossref |t Opt. Lett. |v 38 |y 2013 |
999 | C | 5 | |a 10.1103/PhysRevB.107.184440 |9 -- missing cx lookup -- |1 Giorgianni |p 184440 - |2 Crossref |t Phys. Rev. B |v 107 |y 2023 |
999 | C | 5 | |a 10.1364/OE.475604 |9 -- missing cx lookup -- |1 Mosley |p 4041 - |2 Crossref |t Opt. Express |v 31 |y 2023 |
999 | C | 5 | |a 10.1364/OL.448457 |9 -- missing cx lookup -- |1 Olgun |p 2374 - |2 Crossref |t Opt. Lett. |v 47 |y 2022 |
999 | C | 5 | |a 10.1038/s42005-020-00421-2 |9 -- missing cx lookup -- |1 Lemery |p 150 - |2 Crossref |t Commun. Phys. |v 3 |y 2020 |
999 | C | 5 | |a 10.1364/OE.398268 |9 -- missing cx lookup -- |1 Jang |p 21220 - |2 Crossref |t Opt. Express |v 28 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-019-10657-4 |9 -- missing cx lookup -- |1 Jolly |p 2591 - |2 Crossref |t Nat. Commun. |v 10 |y 2019 |
999 | C | 5 | |a 10.1364/OL.42.002118 |9 -- missing cx lookup -- |1 Ahr |p 2118 - |2 Crossref |t Opt. Lett. |v 42 |y 2017 |
999 | C | 5 | |a 10.1364/OL.40.005762 |9 -- missing cx lookup -- |1 Carbajo |p 5762 - |2 Crossref |t Opt. Lett. |v 40 |y 2015 |
999 | C | 5 | |a 10.1063/1.4936753 |9 -- missing cx lookup -- |1 Uchida |p 221106 - |2 Crossref |t Appl. Phys. Lett. |v 107 |y 2015 |
999 | C | 5 | |a 10.1117/12.3003195 |9 -- missing cx lookup -- |1 Rentschler |p 44 - |2 Crossref |t Proc.SPIE |v 12869 |y 2024 |
999 | C | 5 | |a 10.1364/OE.27.027273 |9 -- missing cx lookup -- |1 Chefonov |p 27273 - |2 Crossref |t Opt. Express |v 27 |y 2019 |
999 | C | 5 | |a 10.1126/science.1242862 |9 -- missing cx lookup -- |1 Kubacka |p 1333 - |2 Crossref |t Science |v 343 |y 2014 |
999 | C | 5 | |a 10.1088/1748-0221/13/01/C01020 |9 -- missing cx lookup -- |1 Su |p C01020 - |2 Crossref |t J. Instrum. |v 13 |y 2018 |
999 | C | 5 | |a 10.1063/1.126390 |9 -- missing cx lookup -- |1 Lee |p 2505 - |2 Crossref |t Appl. Phys. Lett. |v 76 |y 2000 |
999 | C | 5 | |a 10.1364/OL.38.000953 |9 -- missing cx lookup -- |1 Zhang |p 953 - |2 Crossref |t Opt. Lett. |v 38 |y 2013 |
999 | C | 5 | |a 10.1364/OPEX.12.004650 |9 -- missing cx lookup -- |1 Stepanov |p 4650 - |2 Crossref |t Opt. Express |v 12 |y 2004 |
999 | C | 5 | |a 10.1364/OE.11.002486 |9 -- missing cx lookup -- |1 Ahn |p 2486 - |2 Crossref |t Opt. Express |v 11 |y 2003 |
999 | C | 5 | |a 10.1364/OE.503480 |9 -- missing cx lookup -- |1 Matlis |p 44424 - |2 Crossref |t Opt. Express |v 31 |y 2023 |
999 | C | 5 | |a 10.1364/OME.384997 |9 -- missing cx lookup -- |1 Buzády |p 998 - |2 Crossref |t Opt. Mater. Express |v 10 |y 2020 |
999 | C | 5 | |a 10.1007/s10762-022-00896-w |9 -- missing cx lookup -- |1 Antsygin |p 895 - |2 Crossref |t J. Infrared, Millimeter, Terahertz Waves |v 43 |y 2022 |
999 | C | 5 | |a 10.1007/s00340-016-6498-5 |9 -- missing cx lookup -- |1 Kuznetsov |p 223 - |2 Crossref |t Appl. Phys. B |v 122 |y 2016 |
999 | C | 5 | |a 10.1364/OE.23.029729 |9 -- missing cx lookup -- |1 Wu |p 29729 - |2 Crossref |t Opt. Express |v 23 |y 2015 |
999 | C | 5 | |a 10.1364/OE.22.024752 |9 -- missing cx lookup -- |1 Calendron |p 24752 - |2 Crossref |t Opt. Express |v 22 |y 2014 |
999 | C | 5 | |a 10.1364/OL.489397 |9 -- missing cx lookup -- |1 Pergament |p 2833 - |2 Crossref |t Opt. Lett. |v 48 |y 2023 |
999 | C | 5 | |a 10.1364/OL.430651 |9 -- missing cx lookup -- |1 Demirbas |p 3865 - |2 Crossref |t Opt. Lett. |v 46 |y 2021 |
999 | C | 5 | |a 10.1117/12.2545145 |9 -- missing cx lookup -- |1 Kroh |p 42 - |2 Crossref |t Proc. SPIE |v 11264 |y 2020 |
999 | C | 5 | |a 10.1063/1.1373406 |9 -- missing cx lookup -- |1 Lee |p 3583 - |2 Crossref |t Appl. Phys. Lett. |v 78 |y 2001 |
999 | C | 5 | |a 10.1063/1.1929859 |9 -- missing cx lookup -- |1 Pálfalvi |p 123505 - |2 Crossref |t J. Appl. Phys. |v 97 |y 2005 |
999 | C | 5 | |a 10.1007/s00340-006-2414-8 |9 -- missing cx lookup -- |1 Paul |p 111 - |2 Crossref |t Appl. Phys. B |v 86 |y 2006 |
999 | C | 5 | |a 10.1007/BF00620081 |9 -- missing cx lookup -- |1 Edwards |p 373 - |2 Crossref |t Opt. Quantum Electron. |v 16 |y 1984 |
999 | C | 5 | |a 10.1364/OL.22.001553 |9 -- missing cx lookup -- |1 Jundt |p 1 - |2 Crossref |t Opt. Lett. |v 22 |y 1997 |
999 | C | 5 | |a 10.1007/s00340-008-2998-2 |9 -- missing cx lookup -- |1 Gayer |p 343 - |2 Crossref |t Appl. Phys. B |v 91 |y 2008 |
999 | C | 5 | |a 10.1364/AO.16.003214 |9 -- missing cx lookup -- |1 Browder |p 3214 - |2 Crossref |t Appl. Opt. |v 16 |y 1977 |
999 | C | 5 | |a 10.1007/s00340-010-3897-x |9 -- missing cx lookup -- |1 Sowade |p 63 - |2 Crossref |t Appl. Phys. B |v 99 |y 2010 |
999 | C | 5 | |a 10.1364/OL.38.000796 |9 -- missing cx lookup -- |1 Huang |p 796 - |2 Crossref |t Opt. Lett. |v 38 |y 2013 |
999 | C | 5 | |a 10.1063/1.1290046 |9 -- missing cx lookup -- |1 Lee |p 1244 - |2 Crossref |t Appl. Phys. Lett. |v 77 |y 2000 |
999 | C | 5 | |a 10.1063/5.0090072 |9 -- missing cx lookup -- |1 Liu |p 163101 - |2 Crossref |t J. Appl. Phys. |v 131 |y 2022 |
999 | C | 5 | |a 10.1016/j.optcom.2007.10.031 |9 -- missing cx lookup -- |1 Herzog |p 793 - |2 Crossref |t Opt. Commun. |v 281 |y 2008 |
999 | C | 5 | |a 10.2478/s11772-007-0037-1 |9 -- missing cx lookup -- |1 Górski |p 46 - |2 Crossref |t Opto-Electronics Rev. |v 16 |y 2008 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|