001     605882
005     20250715170805.0
024 7 _ |a 10.1038/s41467-024-45985-7
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01564
|2 datacite_doi
024 7 _ |a altmetric:160067982
|2 altmetric
024 7 _ |a pmid:38402242
|2 pmid
024 7 _ |a WOS:001177163800012
|2 WOS
024 7 _ |2 openalex
|a openalex:W4392129353
037 _ _ |a PUBDB-2024-01564
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Schönherr, Robert
|b 0
245 _ _ |a A streamlined approach to structure elucidation using in cellulo crystallized recombinant proteins, InCellCryst
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716454688_516716
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the advent of serial X-ray crystallography on microfocus beamlines at free-electron laser and synchrotron facilities, the demand for protein microcrystals has significantly risen in recent years. However, by in vitro crystallization extensive efforts are usually required to purify proteins and produce sufficiently homogeneous microcrystals. Here, we present InCellCryst, an advanced pipeline for producing homogeneous microcrystals directly within living insect cells. Our baculovirus-based cloning system enables the production of crystals from completely native proteins as well as the screening of different cellular compartments to maximize chances for protein crystallization. By optimizing cloning procedures, recombinant virus production, crystallization and crystal detection, X-ray diffraction data can be collected 24 days after the start of target gene cloning. Furthermore, improved strategies for serial synchrotron diffraction data collection directly from crystals within living cells abolish the need to purify the recombinant protein or the associated microcrystals.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
542 _ _ |i 2024-02-24
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-02-24
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P14
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P14-20150101
|6 EXP:(DE-H253)P-P14-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P12
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P12-20150101
|6 EXP:(DE-H253)P-P12-20150101
|x 1
700 1 _ |a Boger, Juliane
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lahey-Rudolph, J. Mia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harms, Mareike
|b 3
700 1 _ |a Kaiser, Jacqueline
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nachtschatt, Sophie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wobbe, Marla
|b 6
700 1 _ |a Duden, Rainer
|b 7
700 1 _ |a König, Peter
|b 8
700 1 _ |a Bourenkov, Gleb
|0 P:(DE-H253)PIP1007425
|b 9
700 1 _ |a Schneider, Thomas R.
|0 P:(DE-H253)PIP1005932
|b 10
700 1 _ |a Redecke, Lars
|0 P:(DE-H253)PIP1008743
|b 11
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-45985-7
|b Springer Science and Business Media LLC
|d 2024-02-24
|n 1
|p 1709
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-45985-7
|g Vol. 15, no. 1, p. 1709
|0 PERI:(DE-600)2553671-0
|n 1
|p 1709
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://www.nature.com/articles/s41467-024-45985-7
856 4 _ |u https://bib-pubdb1.desy.de/record/605882/files/A%20streamlined%20approach%20to%20structure%20elucidation%20using%20in%20cellulo%20crystallized%20recombinant%20proteins%20InCellCryst.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/605882/files/A%20streamlined%20approach%20to%20structure%20elucidation%20using%20in%20cellulo%20crystallized%20recombinant%20proteins%20InCellCryst.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:605882
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 9
|6 P:(DE-H253)PIP1007425
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1007425
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 10
|6 P:(DE-H253)PIP1005932
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1008743
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)EMBL-User-20120814
|k EMBL-User
|l EMBL-User
|x 0
920 1 _ |0 I:(DE-H253)EMBL-20120731
|k EMBL
|l EMBL
|x 1
920 1 _ |0 I:(DE-H253)U_L__beck-20211012
|k U Lübeck
|l Universität zu Lübeck
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)EMBL-User-20120814
980 _ _ |a I:(DE-H253)EMBL-20120731
980 _ _ |a I:(DE-H253)U_L__beck-20211012
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1002/(SICI)1097-0029(19960501)34:1<77::AID-JEMT11>3.0.CO;2-M
|9 -- missing cx lookup --
|1 GY Fan
|p 77 -
|2 Crossref
|u Fan, G. Y. et al. In vivo calcineurin crystals formed using the baculovirus expression system. Microsc. Res. Tech. 34, 77–86 (1996).
|t Microsc. Res. Tech.
|v 34
|y 1996
999 C 5 |a 10.1128/JVI.02534-09
|9 -- missing cx lookup --
|1 A Brandariz-Nuñez
|p 4289 -
|2 Crossref
|u Brandariz-Nuñez, A., Menaya-Vargas, R., Benavente, J. & Martinez-Costas, J. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain. J. Virol. 84, 4289–301 (2010).
|t J. Virol.
|v 84
|y 2010
999 C 5 |a 10.1074/jbc.M110.204362
|9 -- missing cx lookup --
|2 Crossref
|u Hasegawa, H. et al. In vivo crystallization of human IgG in the endoplasmic reticulum of engineered Chinese hamster ovary (CHO.) cells. J. Biol. Chem. 286, 19917–19931 (2011). .
999 C 5 |a 10.1016/j.cocis.2005.10.002
|9 -- missing cx lookup --
|1 JPK Doye
|p 40 -
|2 Crossref
|u Doye, J. P. K. & Poon, W. C. K. Protein crystallization in vivo. Curr. Opin. Colloid Interface Sci. 11, 40–46 (2006).
|t Curr. Opin. Colloid Interface Sci.
|v 11
|y 2006
999 C 5 |a 10.1107/S2052252517008193
|9 -- missing cx lookup --
|1 M Yamamoto
|p 529 -
|2 Crossref
|u Yamamoto, M. et al. Protein microcrystallography using synchrotron radiation. IUCrJ 4, 529–539 (2017).
|t IUCrJ
|v 4
|y 2017
999 C 5 |a 10.1038/nature05628
|9 -- missing cx lookup --
|1 F Coulibaly
|p 97 -
|2 Crossref
|u Coulibaly, F. et al. The molecular organization of cypovirus polyhedra. Nature 446, 97–101 (2007).
|t Nature
|v 446
|y 2007
999 C 5 |a 10.1126/science.1229663
|9 -- missing cx lookup --
|1 L Redecke
|p 227 -
|2 Crossref
|u Redecke, L. et al. Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser. Sci. (80-.) 339, 227–230 (2013).
|t Sci. (80-.)
|v 339
|y 2013
999 C 5 |a 10.1515/hsz-2018-0158
|9 -- missing cx lookup --
|1 R Schönherr
|p 1 -
|2 Crossref
|u Schönherr, R., Rudolph, J. M. & Redecke, L. Protein crystallization in living cells. Biol. Chem. 399, 1–22 (2018).
|t Biol. Chem.
|v 399
|y 2018
999 C 5 |a 10.1111/tra.12711
|9 -- missing cx lookup --
|2 Crossref
|u Mudogo, C. N., Falke, S., Brognaro, H., Duszenko, M. & Betzel, C. Protein phase separation and determinants of in cell crystallization. Traffic https://doi.org/10.1111/tra.12711 (2020).
999 C 5 |a 10.1038/ncomms7435
|9 -- missing cx lookup --
|1 HM Ginn
|p 1 -
|2 Crossref
|u Ginn, H. M. et al. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nat. Commun. 6, 1–8 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1038/ncomms9681
|9 -- missing cx lookup --
|1 Y Baskaran
|p 1 -
|2 Crossref
|u Baskaran, Y. et al. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat. Commun. 6, 1–11 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1016/j.molcel.2015.02.007
|9 -- missing cx lookup --
|1 H Tsutsui
|p 186 -
|2 Crossref
|u Tsutsui, H. et al. A diffraction-quality protein crystal processed as an autophagic cargo. Mol. Cell 58, 186–193 (2015).
|t Mol. Cell
|v 58
|y 2015
999 C 5 |a 10.1107/S2052252516008903
|9 -- missing cx lookup --
|1 S Banerjee
|p 282 -
|2 Crossref
|u Banerjee, S. et al. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata. IUCrJ 3, 282–293 (2016).
|t IUCrJ
|v 3
|y 2016
999 C 5 |a 10.1038/nature19825
|9 -- missing cx lookup --
|1 JP Colletier
|p 43 -
|2 Crossref
|u Colletier, J. P. et al. De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature 539, 43–47 (2016).
|t Nature
|v 539
|y 2016
999 C 5 |a 10.1107/S2059798316002369
|9 -- missing cx lookup --
|1 M Boudes
|p 576 -
|2 Crossref
|u Boudes, M., Garriga, D., Fryga, A., Caradoc-Davies, T. & Coulibaly, F. A pipeline for structure determination of in vivo-grown crystals using in cellulo diffraction. Acta Crystallogr. Sect. D. Struct. Biol. 72, 576–585 (2016).
|t Acta Crystallogr. Sect. D. Struct. Biol.
|v 72
|y 2016
999 C 5 |a 10.1073/pnas.1609243114
|9 -- missing cx lookup --
|1 C Gati
|p 2247 -
|2 Crossref
|u Gati, C. et al. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc. Natl Acad. Sci. USA 114, 2247–2252 (2017).
|t Proc. Natl Acad. Sci. USA
|v 114
|y 2017
999 C 5 |a 10.1107/S2052252521005297
|9 -- missing cx lookup --
|1 JM Lahey-Rudolph
|p 665 -
|2 Crossref
|u Lahey-Rudolph, J. M. et al. Fixed-target serial femtosecond crystallography using in cellulo grown microcrystals. IUCrJ 8, 665–677 (2021).
|t IUCrJ
|v 8
|y 2021
999 C 5 |2 Crossref
|u Tetreau, G. et al. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat. Commun. 13, 4376 (2022).
999 C 5 |a 10.1038/s41598-016-0028-x
|9 -- missing cx lookup --
|1 D Oberthuer
|p 1 -
|2 Crossref
|u Oberthuer, D. et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7, 1–10 (2017).
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |a 10.2210/pdb6rfu/pdb
|9 -- missing cx lookup --
|2 Crossref
|u Nass, K. et al. In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of genuine co-factors. Nat. Commun. 11, 620 (2020).
999 C 5 |a 10.1073/pnas.0910686106
|9 -- missing cx lookup --
|1 F Coulibaly
|p 22205 -
|2 Crossref
|u Coulibaly, F. et al. The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc. Natl Acad. Sci. USA 106, 22205–10 (2009).
|t Proc. Natl Acad. Sci. USA
|v 106
|y 2009
999 C 5 |a 10.1038/emboj.2009.352
|9 -- missing cx lookup --
|1 X Ji
|p 505 -
|2 Crossref
|u Ji, X. et al. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J. 29, 505–514 (2010).
|t EMBO J.
|v 29
|y 2010
999 C 5 |a 10.1016/j.jsb.2015.08.009
|9 -- missing cx lookup --
|1 X Ji
|p 88 -
|2 Crossref
|u Ji, X. et al. Polyhedra structures and the evolution of the insect viruses. J. Struct. Biol. 192, 88–99 (2015).
|t J. Struct. Biol.
|v 192
|y 2015
999 C 5 |a 10.1107/S1399004714004714
|9 -- missing cx lookup --
|1 D Axford
|p 1435 -
|2 Crossref
|u Axford, D., Ji, X., Stuart, D. I. & Sutton, G. In cellulo structure determination of a novel cypovirus polyhedrin. Acta Crystallogr. Sect. D. Biol. Crystallogr. 70, 1435–1441 (2014).
|t Acta Crystallogr. Sect. D. Biol. Crystallogr.
|v 70
|y 2014
999 C 5 |a 10.1107/S2052252513033939
|9 -- missing cx lookup --
|1 C Gati
|p 87 -
|2 Crossref
|u Gati, C. et al. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1, 87–94 (2014).
|t IUCrJ
|v 1
|y 2014
999 C 5 |a 10.1073/pnas.1413456111
|9 -- missing cx lookup --
|1 MR Sawaya
|p 12769 -
|2 Crossref
|u Sawaya, M. R. et al. Protein crystal structure obtained at 2.9 A resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proc. Natl Acad. Sci. USA 111, 12769–74 (2014).
|t Proc. Natl Acad. Sci. USA
|v 111
|y 2014
999 C 5 |a 10.1073/pnas.1418798112
|9 -- missing cx lookup --
|1 E Chiu
|p 3973 -
|2 Crossref
|u Chiu, E. et al. Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc. Natl Acad. Sci. USA 112, 3973–3978 (2015).
|t Proc. Natl Acad. Sci. USA
|v 112
|y 2015
999 C 5 |a 10.1038/s41598-020-70163-2
|9 -- missing cx lookup --
|2 Crossref
|u Tang, Y., Saul, J., Nagaratnam, N. & Garcia, J. M. M. Construction of gateway ‑ compatible baculovirus expression vectors for high ‑ throughput protein expression and in vivo microcrystal screening. Sci. Rep. https://doi.org/10.1038/s41598-020-70163-2 (2020).
999 C 5 |a 10.1021/ja805983b
|9 -- missing cx lookup --
|1 RD Wampler
|p 14076 -
|2 Crossref
|u Wampler, R. D. et al. Selective detection of protein crystals by second harmonic microscopy. J. Am. Chem. Soc. 130, 14076–14077 (2008).
|t J. Am. Chem. Soc.
|v 130
|y 2008
999 C 5 |a 10.1016/S0021-9258(18)56391-2
|9 -- missing cx lookup --
|1 CE Hall
|p 45 -
|2 Crossref
|u Hall, C. E. Electron microscopy of crystalline edestin. J. Biol. Chem. 185, 45–51 (1950).
|t J. Biol. Chem.
|v 185
|y 1950
999 C 5 |a 10.1063/1.4921591
|9 -- missing cx lookup --
|2 Crossref
|u Schönherr, R. et al. Real-time investigation of dynamic protein crystallization in living cellsa) Real-time investigation of dynamic protein crystallization. 041712, (2015).
999 C 5 |a 10.1107/S2053230X20006172
|9 -- missing cx lookup --
|1 N Nagaratnam
|p 278 -
|2 Crossref
|u Nagaratnam, N. et al. Enhanced X-ray diffraction of in vivo-grown μnS crystals by viscous jets at XFELs. Acta Crystallogr. Sect. F. Struct. Biol. Commun. 76, 278–289 (2020).
|t Acta Crystallogr. Sect. F. Struct. Biol. Commun.
|v 76
|y 2020
999 C 5 |a 10.1038/nmeth.1859
|9 -- missing cx lookup --
|1 R Koopmann
|p 259 -
|2 Crossref
|u Koopmann, R. et al. In vivo protein crystallization opens new routes in structural biology. Nat. Methods 9, 259–262 (2012).
|t Nat. Methods
|v 9
|y 2012
999 C 5 |a 10.1016/j.jsb.2010.02.010
|9 -- missing cx lookup --
|1 S Trowitzsch
|p 45 -
|2 Crossref
|u Trowitzsch, S., Bieniossek, C., Nie, Y., Garzoni, F. & Berger, I. New baculovirus expression tools for recombinant protein complex production. J. Struct. Biol. 172, 45–54 (2010).
|t J. Struct. Biol.
|v 172
|y 2010
999 C 5 |a 10.1007/s10529-013-1429-6
|9 -- missing cx lookup --
|1 M Wilde
|p 743 -
|2 Crossref
|u Wilde, M., Klausberger, M., Palmberger, D., Ernst, W. & Grabherr, R. Tnao38, high five and Sf9-evaluation of host-virus interactions in three different insect cell lines: Baculovirus production and recombinant protein expression. Biotechnol. Lett. 36, 743–749 (2014).
|t Biotechnol. Lett.
|v 36
|y 2014
999 C 5 |2 Crossref
|u Rohrmann, G. F. Baculovirus Molecular Biology. National Center for Biotechnology Information (US). (2019).
999 C 5 |a 10.1107/S1600576720010687
|9 -- missing cx lookup --
|1 JM Lahey-Rudolph
|p 1169 -
|2 Crossref
|u Lahey-Rudolph, J. M. et al. Rapid screening of in cellulo grown protein crystals via a small-angle X-ray scattering/X-ray powder diffraction synergistic approach. J. Appl. Crystallogr. 53, 1169–1180 (2020).
|t J. Appl. Crystallogr.
|v 53
|y 2020
999 C 5 |a 10.1038/nsb910
|9 -- missing cx lookup --
|1 P Yuan
|p 264 -
|2 Crossref
|u Yuan, P. et al. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat. Struct. Biol. 10, 264–270 (2003).
|t Nat. Struct. Biol.
|v 10
|y 2003
999 C 5 |a 10.1107/S2059798321003855
|9 -- missing cx lookup --
|1 B Norton-Baker
|p 820 -
|2 Crossref
|u Norton-Baker, B. et al. A simple vapor-diffusion method enables protein crystallization inside the HARE serial crystallography chip. Acta Crystallogr. Sect. D. Struct. Biol. 77, 820–834 (2021).
|t Acta Crystallogr. Sect. D. Struct. Biol.
|v 77
|y 2021
999 C 5 |a 10.1107/S2059798316000954
|9 -- missing cx lookup --
|1 U Zander
|p 454 -
|2 Crossref
|u Zander, U. et al. Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr. Sect. D. Struct. Biol. 72, 454–466 (2016).
|t Acta Crystallogr. Sect. D. Struct. Biol.
|v 72
|y 2016
999 C 5 |a 10.1038/s41586-021-03274-z
|9 -- missing cx lookup --
|1 A Shahsavar
|p 677 -
|2 Crossref
|u Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).
|t Nature
|v 591
|y 2021
999 C 5 |a 10.1107/S0021889812002312
|9 -- missing cx lookup --
|1 TA White
|p 335 -
|2 Crossref
|u White, T. A. et al. CrystFEL: A software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45, 335–341 (2012).
|t J. Appl. Crystallogr.
|v 45
|y 2012
999 C 5 |a 10.1107/S0907444909047337
|9 -- missing cx lookup --
|1 W Kabsch
|p 125 -
|2 Crossref
|u Kabsch, W. Xds. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 125–132 (2010).
|t Acta Crystallogr. Sect. D. Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |a 10.1107/S2053273320013650
|9 -- missing cx lookup --
|1 M Metz
|p 19 -
|2 Crossref
|u Metz, M. et al. Macromolecular phasing using diffraction from multiple crystal forms. Acta Crystallogr. Sect. A 77, 19–35 (2021).
|t Acta Crystallogr. Sect. A
|v 77
|y 2021
999 C 5 |a 10.1107/S1399004715004514
|9 -- missing cx lookup --
|1 N Coquelle
|p 1184 -
|2 Crossref
|u Coquelle, N. et al. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams. Acta Crystallogr. Sect. D. Biol. Crystallogr. 71, 1184–96 (2015).
|t Acta Crystallogr. Sect. D. Biol. Crystallogr.
|v 71
|y 2015
999 C 5 |a 10.1063/1.4928706
|9 -- missing cx lookup --
|1 C Mueller
|p 054302 -
|2 Crossref
|u Mueller, C. et al. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Struct. Dyn. 2, 054302 (2015).
|t Struct. Dyn.
|v 2
|y 2015
999 C 5 |a 10.1038/srep10451
|9 -- missing cx lookup --
|1 P Roedig
|p 1 -
|2 Crossref
|u Roedig, P. et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5, 1–11 (2015).
|t Sci. Rep.
|v 5
|y 2015
999 C 5 |a 10.1107/S2052252518005389
|9 -- missing cx lookup --
|1 G Guo
|p 238 -
|2 Crossref
|u Guo, G. et al. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography. IUCrJ 5, 238–246 (2018).
|t IUCrJ
|v 5
|y 2018
999 C 5 |a 10.1107/S1600576716004751
|9 -- missing cx lookup --
|1 TA White
|p 680 -
|2 Crossref
|u White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).
|t J. Appl. Crystallogr.
|v 49
|y 2016
999 C 5 |a 10.1038/s41586-021-03819-2
|9 -- missing cx lookup --
|1 J Jumper
|p 583 -
|2 Crossref
|u Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
|t Nature
|v 596
|y 2021
999 C 5 |a 10.1093/nar/gkab1061
|9 -- missing cx lookup --
|1 M Varadi
|p D439 -
|2 Crossref
|u Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
|t Nucleic Acids Res.
|v 50
|y 2022
999 C 5 |a 10.1101/2023.03.28.533948
|9 -- missing cx lookup --
|2 Crossref
|u Kardoost, A. et al. Convolutional neural network approach for the automated identification of in cellulo crystals. bioRxiv 2023.03.28.533948 https://doi.org/10.1101/2023.03.28.533948 (2023).
999 C 5 |a 10.1016/j.bpj.2010.10.051
|9 -- missing cx lookup --
|1 EJ Gualtieri
|p 207 -
|2 Crossref
|u Gualtieri, E. J. et al. Detection of membrane protein two-dimensional crystals in living cells. Biophys. J. 100, 207–214 (2011).
|t Biophys. J.
|v 100
|y 2011
999 C 5 |a 10.1016/j.jmb.2004.06.026
|9 -- missing cx lookup --
|1 F Tourís-Otero
|p 361 -
|2 Crossref
|u Tourís-Otero, F., Cortez-San Martín, M., Martínez-Costas, J. & Benavente, J. Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of sigmaNS and lambdaA to microNS inclusions. J. Mol. Biol. 341, 361–374 (2004).
|t J. Mol. Biol.
|v 341
|y 2004
999 C 5 |2 Crossref
|u O’Reilly, D. R., Miller, L. K. & Luckow, V. A. Baculovirus expression vectors: a laboratory manual. (Oxford University Press, 1994).
999 C 5 |2 Crossref
|u Blanchet, C. E. et al. Highly automated and time-resolved BioSAXS at the P12 beamline of EMBL Hamburg. 23, 2015 (2015).
999 C 5 |a 10.1107/S1399004714026959
|9 -- missing cx lookup --
|1 A Round
|p 67 -
|2 Crossref
|u Round, A. et al. BioSAXS Sample Changer: A robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments. Acta Crystallogr. Sect. D. Biol. Crystallogr. 71, 67–75 (2015).
|t Acta Crystallogr. Sect. D. Biol. Crystallogr.
|v 71
|y 2015
999 C 5 |a 10.1107/S1600576720013412
|9 -- missing cx lookup --
|1 K Manalastas-Cantos
|p 343 -
|2 Crossref
|u Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J. Appl. Crystallogr. 54, 343–355 (2021).
|t J. Appl. Crystallogr.
|v 54
|y 2021
999 C 5 |a 10.1107/S1600577519001267
|9 -- missing cx lookup --
|1 M Oscarsson
|p 393 -
|2 Crossref
|u Oscarsson, M. et al. MXCuBE2: The dawn of MXCuBE collaboration. J. Synchrotron Radiat. 26, 393–405 (2019).
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1107/S2053273319010593
|9 -- missing cx lookup --
|1 Y Gevorkov
|p 694 -
|2 Crossref
|u Gevorkov, Y. et al. XGANDALF - Extended gradient descent algorithm for lattice finding. Acta Crystallogr. Sect. A Found. Adv. 75, 694–704 (2019).
|t Acta Crystallogr. Sect. A Found. Adv.
|v 75
|y 2019
999 C 5 |a 10.1107/S0907444912048524
|9 -- missing cx lookup --
|1 HR Powell
|p 1195 -
|2 Crossref
|u Powell, H. R., Johnson, O. & Leslie, A. G. W. Autoindexing diffraction images with iMosflm. Acta Crystallogr. D. Biol. Crystallogr. 69, 1195–1203 (2013).
|t Acta Crystallogr. D. Biol. Crystallogr.
|v 69
|y 2013
999 C 5 |a 10.1107/S2059798316010706
|9 -- missing cx lookup --
|1 HM Ginn
|p 956 -
|2 Crossref
|u Ginn, H. M. et al. TakeTwo: an indexing algorithm suited to still images with known crystal parameters. Acta Crystallogr. Sect. D., Struct. Biol. 72, 956–965 (2016).
|t Acta Crystallogr. Sect. D., Struct. Biol.
|v 72
|y 2016
999 C 5 |a 10.1107/S1399004715011918
|9 -- missing cx lookup --
|1 O Svensson
|p 1757 -
|2 Crossref
|u Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D. & Bowler, M. W. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. D. Biol. Crystallogr. 71, 1757–1767 (2015).
|t Acta Crystallogr. D. Biol. Crystallogr.
|v 71
|y 2015
999 C 5 |a 10.1107/S0021889807021206
|9 -- missing cx lookup --
|1 AJ McCoy
|p 658 -
|2 Crossref
|u McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
|t J. Appl. Crystallogr.
|v 40
|y 2007
999 C 5 |a 10.1107/S0907444909052925
|9 -- missing cx lookup --
|1 PD Adams
|p 213 -
|2 Crossref
|u Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
|t Acta Crystallogr. D. Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |a 10.1107/S2059798319011471
|9 -- missing cx lookup --
|1 D Liebschner
|p 861 -
|2 Crossref
|u Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D., Struct. Biol. 75, 861–877 (2019).
|t Acta Crystallogr. Sect. D., Struct. Biol.
|v 75
|y 2019
999 C 5 |a 10.1107/S0907444910007493
|9 -- missing cx lookup --
|1 P Emsley
|p 486 -
|2 Crossref
|u Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystallogr. 66, 486–501 (2010).
|t Acta Crystallogr. Sect. D. Biol. Crystallogr.
|v 66
|y 2010


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21