001     605804
005     20250715171305.0
024 7 _ |a 10.3390/cryst14020164
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01544
|2 datacite_doi
024 7 _ |a WOS:001173550500001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4391535311
037 _ _ |a PUBDB-2024-01544
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gevorkov, Yaroslav
|0 P:(DE-H253)PIP1027420
|b 0
245 _ _ |a FDIP—A Fast Diffraction Image Processing Library for X-ray Crystallography Experiments
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738233272_3822092
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Serial crystallography (SX) is a cutting-edge technique in structural biology, involving the systematic collection of X-ray diffraction data from numerous randomly oriented microcrystals. To extract comprehensive three-dimensional information about the studied system, SX utilises thousands of measured diffraction patterns. As such, SX takes advantages of the properties of modern X-ray sources, including Free Electron Lasers (FELs) and third and fourth generation synchrotrons, as well as contemporary high-repetition-rate detectors. Efficient analysis of the extensive datasets generated during SX experiments demands fast and effective algorithms. The FDIP library offers meticulously optimised functions tailored for preprocessing data obtained in SX experiments. This encompasses tasks such as background subtraction, identification and masking of parasitic streaks, elimination of unwanted powder diffraction (e.g., from ice or salt crystals), and pinpointing useful Bragg peaks in each diffraction pattern. The library is equipped with a user-friendly graphical interface for facile parameter adjustment tailored to specific datasets. Compatible with popular SX processing software like OnDA, Cheetah, CrystFEL, and Merge3D, the FDIP library enhances the capabilities of these tools for streamlined and precise serial crystallography analyses.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
542 _ _ |i 2024-02-05
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P11
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P11-20150101
|6 EXP:(DE-H253)P-P11-20150101
|x 0
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 1
693 _ _ |0 EXP:(DE-H253)REGAE-20150101
|5 EXP:(DE-H253)REGAE-20150101
|e Relativistic Electron Gun for Atomic Exploration
|x 2
700 1 _ |a Galchenkova, Marina
|0 P:(DE-H253)PIP1081165
|b 1
|u desy
700 1 _ |a Mariani, Valerio
|0 P:(DE-H253)PIP1021498
|b 2
|u desy
700 1 _ |a Barty, Anton
|0 P:(DE-H253)PIP1008245
|b 3
|u desy
700 1 _ |a White, Thomas A.
|0 P:(DE-H253)PIP1010779
|b 4
|u desy
700 1 _ |a Chapman, Henry N.
|0 P:(DE-H253)PIP1006324
|b 5
700 1 _ |a Yefanov, Oleksandr
|0 P:(DE-H253)PIP1006155
|b 6
|e Corresponding author
|u desy
773 1 8 |a 10.3390/cryst14020164
|b MDPI AG
|d 2024-02-05
|n 2
|p 164
|3 journal-article
|2 Crossref
|t Crystals
|v 14
|y 2024
|x 2073-4352
773 _ _ |a 10.3390/cryst14020164
|g Vol. 14, no. 2, p. 164 -
|0 PERI:(DE-600)2661516-2
|n 2
|p 164
|t Crystals
|v 14
|y 2024
|x 2073-4352
856 4 _ |u https://bib-pubdb1.desy.de/record/605804/files/crystals-14-00164.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/605804/files/crystals-14-00164.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:605804
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1027420
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1027420
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1081165
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1081165
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1021498
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1021498
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1008245
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1008245
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1010779
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1010779
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1010779
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1006324
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 5
|6 P:(DE-H253)PIP1006324
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1006324
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1006155
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1006155
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CRYSTALS : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:26:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:26:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:26:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-H253)FS-CFEL-1-20120731
|k FS-CFEL-1
|l CFEL-Coherent X-Ray Imaging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-CFEL-1-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nature09750
|9 -- missing cx lookup --
|1 Chapman
|p 73 -
|2 Crossref
|t Nature
|v 470
|y 2011
999 C 5 |a 10.1126/science.1217737
|9 -- missing cx lookup --
|1 Boutet
|p 362 -
|2 Crossref
|t Science
|v 337
|y 2012
999 C 5 |a 10.1126/science.aac5492
|9 -- missing cx lookup --
|1 Barends
|p 445 -
|2 Crossref
|t Science
|v 350
|y 2015
999 C 5 |a 10.1126/science.aad5081
|9 -- missing cx lookup --
|1 Pande
|p 725 -
|2 Crossref
|t Science
|v 352
|y 2016
999 C 5 |2 Crossref
|u Stagno, J.R., Knoska, J., Chapman, H.N., and Wang, Y.X. (2022). RNA Structure and Dynamics, Springer.
999 C 5 |a 10.1038/s43586-022-00141-7
|9 -- missing cx lookup --
|1 Barends
|p 59 -
|2 Crossref
|t Nat. Rev. Methods Prim.
|v 2
|y 2022
999 C 5 |a 10.1107/S205225251900914X
|9 -- missing cx lookup --
|1 Tolstikova
|p 927 -
|2 Crossref
|t IUCrJ
|v 6
|y 2019
999 C 5 |a 10.1063/1.5124387
|9 -- missing cx lookup --
|1 Yefanov
|p 064702 -
|2 Crossref
|t Struct. Dyn.
|v 6
|y 2019
999 C 5 |a 10.1107/S1600576716007469
|9 -- missing cx lookup --
|1 Mariani
|p 1073 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 49
|y 2016
999 C 5 |a 10.1107/S1600576714007626
|9 -- missing cx lookup --
|1 Barty
|p 1118 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 47
|y 2014
999 C 5 |a 10.1063/1.5143480
|9 -- missing cx lookup --
|1 Leonarski
|p 014305 -
|2 Crossref
|t Struct. Dyn.
|v 7
|y 2020
999 C 5 |a 10.1107/S205979831801567X
|9 -- missing cx lookup --
|p 178 -
|2 Crossref
|t Acta Crystallogr. Sect. D Struct. Biol.
|v 75
|y 2019
999 C 5 |a 10.1111/febs.15099
|9 -- missing cx lookup --
|1 Zhao
|p 4402 -
|2 Crossref
|t FEBS J.
|v 286
|y 2019
999 C 5 |a 10.1088/0022-3727/41/19/195505
|9 -- missing cx lookup --
|1 DePonte
|p 195505 -
|2 Crossref
|t J. Phys. D Appl. Phys.
|v 41
|y 2008
999 C 5 |a 10.1038/srep44628
|9 -- missing cx lookup --
|1 Oberthuer
|p 44628 -
|2 Crossref
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |a 10.1038/srep06026
|9 -- missing cx lookup --
|1 Hunter
|p 6026 -
|2 Crossref
|t Sci. Rep.
|v 4
|y 2014
999 C 5 |a 10.1038/nmeth.2110
|9 -- missing cx lookup --
|1 Maia
|p 854 -
|2 Crossref
|t Nat. Methods
|v 9
|y 2012
999 C 5 |a 10.1107/S2052252520008672
|9 -- missing cx lookup --
|1 Bernstein
|p 784 -
|2 Crossref
|t IUCrJ
|v 7
|y 2020
999 C 5 |a 10.1107/S0021889812002312
|9 -- missing cx lookup --
|1 White
|p 335 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 45
|y 2012
999 C 5 |a 10.1364/OE.23.028459
|9 -- missing cx lookup --
|1 Yefanov
|p 28459 -
|2 Crossref
|t Opt. Express
|v 23
|y 2015
999 C 5 |a 10.1088/1742-6596/425/20/202012
|9 -- missing cx lookup --
|1 Kieffer
|p 202012 -
|2 Crossref
|t J. Phys. Conf. Ser.
|v 425
|y 2013
999 C 5 |a 10.1107/S2052252518008369
|9 -- missing cx lookup --
|1 Wiedorn
|p 574 -
|2 Crossref
|t IUCrJ
|v 5
|y 2018
999 C 5 |a 10.1098/rstb.2013.0333
|9 -- missing cx lookup --
|2 Crossref
|u Yefanov, O., Gati, C., Bourenkov, G., Kirian, R.A., White, T.A., Spence, J.C.H., Chapman, H.N., and Barty, A. (2014). Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography. Philos. Trans. R. Soc. B Biol. Sci., 369.
999 C 5 |a 10.1038/nature16949
|9 -- missing cx lookup --
|1 Ayyer
|p 202 -
|2 Crossref
|t Nature
|v 530
|y 2016
999 C 5 |a 10.1107/S0907444909047337
|9 -- missing cx lookup --
|1 Kabsch
|p 125 -
|2 Crossref
|t Acta Crystallogr. Sect. D Biol. Crystallogr.
|v 66
|y 2010
999 C 5 |2 Crossref
|u Guenther, S., Reinke, P.Y., Fernandez-Garcia, Y., Lieske, J., Lane, T.J., Ginn, H., Koua, F., Ehrt, C., Ewert, W., and Oberthuer, D. (2020). Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease. bioRxiv.
999 C 5 |1 Hart
|y 2012
|2 Crossref
|o Hart 2012
999 C 5 |a 10.1126/science.abf7945
|9 -- missing cx lookup --
|1 Reinke
|p 642 -
|2 Crossref
|t Science
|v 372
|y 2021
999 C 5 |a 10.1126/science.1218231
|9 -- missing cx lookup --
|1 Karplus
|p 1030 -
|2 Crossref
|t Science
|v 336
|y 2012
999 C 5 |a 10.1107/S1600576716005471
|9 -- missing cx lookup --
|1 Assmann
|p 1021 -
|2 Crossref
|t J. Appl. Crystallogr.
|v 49
|y 2016
999 C 5 |a 10.26434/chemrxiv-2023-wnm9n
|9 -- missing cx lookup --
|2 Crossref
|u Gasparotto, P., Barba, L., Stadler, H.C., Assmann, G., Mendonça, H., Ashton, A., Janousch, M., Leonarski, F., and Béjar, B. (2023). TORO Indexer: A PyTorch-Based Indexing Algorithm for kHz Serial Crystallography. ChemRxiv.
999 C 5 |2 Crossref
|u Swanson, H.E., McMurdie, H.F., Morris, M.C., and Evans, E.H. (1953). Standard X-ray Diffraction Powder Patterns, Number Bd. 1–10 in NBS Monograph.
999 C 5 |a 10.1016/0022-3697(63)90092-1
|9 -- missing cx lookup --
|1 Owen
|p 1519 -
|2 Crossref
|t J. Phys. Chem. Solids
|v 24
|y 1963
999 C 5 |a 10.3390/cryst13020170
|9 -- missing cx lookup --
|2 Crossref
|u Varma, M., Krottenmüller, M., Poswal, H.K., and Kuntscher, C.A. (2023). Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals, 13.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21