000605804 001__ 605804
000605804 005__ 20250715171305.0
000605804 0247_ $$2doi$$a10.3390/cryst14020164
000605804 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01544
000605804 0247_ $$2WOS$$aWOS:001173550500001
000605804 0247_ $$2openalex$$aopenalex:W4391535311
000605804 037__ $$aPUBDB-2024-01544
000605804 041__ $$aEnglish
000605804 082__ $$a540
000605804 1001_ $$0P:(DE-H253)PIP1027420$$aGevorkov, Yaroslav$$b0
000605804 245__ $$aFDIP—A Fast Diffraction Image Processing Library for X-ray Crystallography Experiments
000605804 260__ $$aBasel$$bMDPI$$c2024
000605804 3367_ $$2DRIVER$$aarticle
000605804 3367_ $$2DataCite$$aOutput Types/Journal article
000605804 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738233272_3822092
000605804 3367_ $$2BibTeX$$aARTICLE
000605804 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000605804 3367_ $$00$$2EndNote$$aJournal Article
000605804 520__ $$aSerial crystallography (SX) is a cutting-edge technique in structural biology, involving the systematic collection of X-ray diffraction data from numerous randomly oriented microcrystals. To extract comprehensive three-dimensional information about the studied system, SX utilises thousands of measured diffraction patterns. As such, SX takes advantages of the properties of modern X-ray sources, including Free Electron Lasers (FELs) and third and fourth generation synchrotrons, as well as contemporary high-repetition-rate detectors. Efficient analysis of the extensive datasets generated during SX experiments demands fast and effective algorithms. The FDIP library offers meticulously optimised functions tailored for preprocessing data obtained in SX experiments. This encompasses tasks such as background subtraction, identification and masking of parasitic streaks, elimination of unwanted powder diffraction (e.g., from ice or salt crystals), and pinpointing useful Bragg peaks in each diffraction pattern. The library is equipped with a user-friendly graphical interface for facile parameter adjustment tailored to specific datasets. Compatible with popular SX processing software like OnDA, Cheetah, CrystFEL, and Merge3D, the FDIP library enhances the capabilities of these tools for streamlined and precise serial crystallography analyses.
000605804 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000605804 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000605804 542__ $$2Crossref$$i2024-02-05$$uhttps://creativecommons.org/licenses/by/4.0/
000605804 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000605804 693__ $$0EXP:(DE-H253)P-P11-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P11-20150101$$aPETRA III$$fPETRA Beamline P11$$x0
000605804 693__ $$0EXP:(DE-H253)XFEL-Exp-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-Exp-20150101$$aXFEL$$eExperiments at XFEL$$x1
000605804 693__ $$0EXP:(DE-H253)REGAE-20150101$$5EXP:(DE-H253)REGAE-20150101$$eRelativistic Electron Gun for Atomic Exploration$$x2
000605804 7001_ $$0P:(DE-H253)PIP1081165$$aGalchenkova, Marina$$b1$$udesy
000605804 7001_ $$0P:(DE-H253)PIP1021498$$aMariani, Valerio$$b2$$udesy
000605804 7001_ $$0P:(DE-H253)PIP1008245$$aBarty, Anton$$b3$$udesy
000605804 7001_ $$0P:(DE-H253)PIP1010779$$aWhite, Thomas A.$$b4$$udesy
000605804 7001_ $$0P:(DE-H253)PIP1006324$$aChapman, Henry N.$$b5
000605804 7001_ $$0P:(DE-H253)PIP1006155$$aYefanov, Oleksandr$$b6$$eCorresponding author$$udesy
000605804 77318 $$2Crossref$$3journal-article$$a10.3390/cryst14020164$$bMDPI AG$$d2024-02-05$$n2$$p164$$tCrystals$$v14$$x2073-4352$$y2024
000605804 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst14020164$$gVol. 14, no. 2, p. 164 -$$n2$$p164$$tCrystals$$v14$$x2073-4352$$y2024
000605804 8564_ $$uhttps://bib-pubdb1.desy.de/record/605804/files/crystals-14-00164.pdf$$yOpenAccess
000605804 8564_ $$uhttps://bib-pubdb1.desy.de/record/605804/files/crystals-14-00164.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000605804 909CO $$ooai:bib-pubdb1.desy.de:605804$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000605804 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1027420$$aEuropean XFEL$$b0$$kXFEL.EU
000605804 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027420$$aExternal Institute$$b0$$kExtern
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1081165$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000605804 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1081165$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021498$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000605804 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1021498$$aEuropean XFEL$$b2$$kXFEL.EU
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1008245$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000605804 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008245$$aEuropean XFEL$$b3$$kXFEL.EU
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1010779$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000605804 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1010779$$aCentre for Free-Electron Laser Science$$b4$$kCFEL
000605804 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1010779$$aEuropean XFEL$$b4$$kXFEL.EU
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006324$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000605804 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006324$$aCentre for Free-Electron Laser Science$$b5$$kCFEL
000605804 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006324$$aEuropean XFEL$$b5$$kXFEL.EU
000605804 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006155$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000605804 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006155$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000605804 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000605804 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000605804 9141_ $$y2024
000605804 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
000605804 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000605804 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
000605804 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
000605804 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000605804 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
000605804 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2022$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:26:56Z
000605804 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:26:56Z
000605804 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:26:56Z
000605804 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000605804 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
000605804 9201_ $$0I:(DE-H253)FS-CFEL-1-20120731$$kFS-CFEL-1$$lCFEL-Coherent X-Ray Imaging$$x0
000605804 980__ $$ajournal
000605804 980__ $$aVDB
000605804 980__ $$aI:(DE-H253)FS-CFEL-1-20120731
000605804 980__ $$aUNRESTRICTED
000605804 9801_ $$aFullTexts
000605804 999C5 $$1Chapman$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09750$$p73 -$$tNature$$v470$$y2011
000605804 999C5 $$1Boutet$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1217737$$p362 -$$tScience$$v337$$y2012
000605804 999C5 $$1Barends$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aac5492$$p445 -$$tScience$$v350$$y2015
000605804 999C5 $$1Pande$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad5081$$p725 -$$tScience$$v352$$y2016
000605804 999C5 $$2Crossref$$uStagno, J.R., Knoska, J., Chapman, H.N., and Wang, Y.X. (2022). RNA Structure and Dynamics, Springer.
000605804 999C5 $$1Barends$$2Crossref$$9-- missing cx lookup --$$a10.1038/s43586-022-00141-7$$p59 -$$tNat. Rev. Methods Prim.$$v2$$y2022
000605804 999C5 $$1Tolstikova$$2Crossref$$9-- missing cx lookup --$$a10.1107/S205225251900914X$$p927 -$$tIUCrJ$$v6$$y2019
000605804 999C5 $$1Yefanov$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5124387$$p064702 -$$tStruct. Dyn.$$v6$$y2019
000605804 999C5 $$1Mariani$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716007469$$p1073 -$$tJ. Appl. Crystallogr.$$v49$$y2016
000605804 999C5 $$1Barty$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576714007626$$p1118 -$$tJ. Appl. Crystallogr.$$v47$$y2014
000605804 999C5 $$1Leonarski$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5143480$$p014305 -$$tStruct. Dyn.$$v7$$y2020
000605804 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S205979831801567X$$p178 -$$tActa Crystallogr. Sect. D Struct. Biol.$$v75$$y2019
000605804 999C5 $$1Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1111/febs.15099$$p4402 -$$tFEBS J.$$v286$$y2019
000605804 999C5 $$1DePonte$$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3727/41/19/195505$$p195505 -$$tJ. Phys. D Appl. Phys.$$v41$$y2008
000605804 999C5 $$1Oberthuer$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep44628$$p44628 -$$tSci. Rep.$$v7$$y2017
000605804 999C5 $$1Hunter$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep06026$$p6026 -$$tSci. Rep.$$v4$$y2014
000605804 999C5 $$1Maia$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2110$$p854 -$$tNat. Methods$$v9$$y2012
000605804 999C5 $$1Bernstein$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252520008672$$p784 -$$tIUCrJ$$v7$$y2020
000605804 999C5 $$1White$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889812002312$$p335 -$$tJ. Appl. Crystallogr.$$v45$$y2012
000605804 999C5 $$1Yefanov$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.23.028459$$p28459 -$$tOpt. Express$$v23$$y2015
000605804 999C5 $$1Kieffer$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/425/20/202012$$p202012 -$$tJ. Phys. Conf. Ser.$$v425$$y2013
000605804 999C5 $$1Wiedorn$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252518008369$$p574 -$$tIUCrJ$$v5$$y2018
000605804 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rstb.2013.0333$$uYefanov, O., Gati, C., Bourenkov, G., Kirian, R.A., White, T.A., Spence, J.C.H., Chapman, H.N., and Barty, A. (2014). Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography. Philos. Trans. R. Soc. B Biol. Sci., 369.
000605804 999C5 $$1Ayyer$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature16949$$p202 -$$tNature$$v530$$y2016
000605804 999C5 $$1Kabsch$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909047337$$p125 -$$tActa Crystallogr. Sect. D Biol. Crystallogr.$$v66$$y2010
000605804 999C5 $$2Crossref$$uGuenther, S., Reinke, P.Y., Fernandez-Garcia, Y., Lieske, J., Lane, T.J., Ginn, H., Koua, F., Ehrt, C., Ewert, W., and Oberthuer, D. (2020). Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease. bioRxiv.
000605804 999C5 $$1Hart$$2Crossref$$oHart 2012$$y2012
000605804 999C5 $$1Reinke$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abf7945$$p642 -$$tScience$$v372$$y2021
000605804 999C5 $$1Karplus$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1218231$$p1030 -$$tScience$$v336$$y2012
000605804 999C5 $$1Assmann$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716005471$$p1021 -$$tJ. Appl. Crystallogr.$$v49$$y2016
000605804 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.26434/chemrxiv-2023-wnm9n$$uGasparotto, P., Barba, L., Stadler, H.C., Assmann, G., Mendonça, H., Ashton, A., Janousch, M., Leonarski, F., and Béjar, B. (2023). TORO Indexer: A PyTorch-Based Indexing Algorithm for kHz Serial Crystallography. ChemRxiv.
000605804 999C5 $$2Crossref$$uSwanson, H.E., McMurdie, H.F., Morris, M.C., and Evans, E.H. (1953). Standard X-ray Diffraction Powder Patterns, Number Bd. 1–10 in NBS Monograph.
000605804 999C5 $$1Owen$$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(63)90092-1$$p1519 -$$tJ. Phys. Chem. Solids$$v24$$y1963
000605804 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/cryst13020170$$uVarma, M., Krottenmüller, M., Poswal, H.K., and Kuntscher, C.A. (2023). Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals, 13.