Home > Publications database > A High‐Energy Tellurium Redox‐Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries > print |
001 | 605553 | ||
005 | 20250723171711.0 | ||
024 | 7 | _ | |a 10.1002/adma.202313621 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01504 |2 datacite_doi |
024 | 7 | _ | |a altmetric:159148455 |2 altmetric |
024 | 7 | _ | |a pmid:38316395 |2 pmid |
024 | 7 | _ | |a WOS:001160308100001 |2 WOS |
024 | 7 | _ | |a openalex:W4391607304 |2 openalex |
037 | _ | _ | |a PUBDB-2024-01504 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Du, Jingwei |0 P:(DE-H253)PIP1098080 |b 0 |
245 | _ | _ | |a A High‐Energy Tellurium Redox‐Amphoteric Conversion Cathode Chemistry for Aqueous Zinc Batteries |
260 | _ | _ | |a Weinheim |c 2024 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750767567_280610 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Rechargeable aqueous zinc batteries are potential candidates for sustainable energy storage systems at a grid scale, owing to their high safety and low cost. However, the existing cathode chemistries exhibit restricted energy density, which hinders their extensive applications. Here, a tellurium redox-amphoteric conversion cathode chemistry is presented for aqueous zinc batteries, which delivers a specific capacity of 1223.9 mAh gTe$^{−1}$ and a high energy density of 1028.0 Wh kgTe$^{−1}$. A highly concentrated electrolyte (30 mol kg$^{−1}$ ZnCl$_2$) is revealed crucial for initiating the Te redox-amphoteric conversion as it suppresses the H$_2$O reactivity and inhibits undesirable hydrolysis of the Te$^{4+}$ product. By carrying out multiple operando/ex situ characterizations, the reversible six-electron Te$^{2−}$/Te$^0$/Te$^{4+}$ conversion with TeCl$_4$ is identified as the fully charged product and ZnTe as the fully discharged product. This finding not only enriches the conversion-type battery chemistries but also establishes a critical step in exploring redox-amphoteric materials for aqueous zinc batteries and beyond. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)417590517 - SFB 1415: Chemie der synthetischen zweidimensionalen Materialien (417590517) |0 G:(GEPRIS)417590517 |c 417590517 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P65 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P65-20150101 |6 EXP:(DE-H253)P-P65-20150101 |x 0 |
700 | 1 | _ | |a Zhao, Yirong |b 1 |
700 | 1 | _ | |a Chu, Xingyuan |0 P:(DE-H253)PIP1101476 |b 2 |
700 | 1 | _ | |a Wang, Gang |0 P:(DE-H253)PIP1008694 |b 3 |
700 | 1 | _ | |a Neumann, Christof |b 4 |
700 | 1 | _ | |a Xu, Hao |0 P:(DE-H253)PIP1107337 |b 5 |
700 | 1 | _ | |a Li, Xiaodong |0 P:(DE-H253)PIP1080044 |b 6 |
700 | 1 | _ | |a Löffler, Markus |b 7 |
700 | 1 | _ | |a Lu, Qiongqiong |0 P:(DE-H253)PIP1090398 |b 8 |
700 | 1 | _ | |a Zhang, Jiaxu |b 9 |
700 | 1 | _ | |a Li, Dongqi |0 P:(DE-H253)PIP1092232 |b 10 |
700 | 1 | _ | |a Zou, Jianxin |b 11 |
700 | 1 | _ | |a Mikhailova, Daria |0 P:(DE-H253)PIP1008118 |b 12 |
700 | 1 | _ | |a Turchanin, Andrey |b 13 |
700 | 1 | _ | |a Feng, Xinliang |0 P:(DE-H253)PIP1081776 |b 14 |e Corresponding author |
700 | 1 | _ | |a Yu, Minghao |0 P:(DE-H253)PIP1083931 |b 15 |e Corresponding author |
773 | _ | _ | |a 10.1002/adma.202313621 |g p. 2313621 |0 PERI:(DE-600)1474949-X |n 19 |p 2313621 |t Advanced materials |v 36 |y 2024 |x 0935-9648 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/605553/files/Advanced%20Materials%20-%202024%20-%20Du%20-%20A%20High%E2%80%90Energy%20Tellurium%20Redox%E2%80%90Amphoteric%20Conversion%20Cathode%20Chemistry%20for%20Aqueous%20Zinc.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/605553/files/Advanced%20Materials%20-%202024%20-%20Du%20-%20A%20High%E2%80%90Energy%20Tellurium%20Redox%E2%80%90Amphoteric%20Conversion%20Cathode%20Chemistry%20for%20Aqueous%20Zinc.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:605553 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1098080 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1101476 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1008694 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1107337 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1080044 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1080044 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1090398 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1092232 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1008118 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1081776 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1083931 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-13 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2022 |d 2024-12-13 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-13 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-13 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2022 |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-13 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-13 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-13 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-13 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|