Home > Publications database > Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions > print |
001 | 605543 | ||
005 | 20250715170745.0 | ||
024 | 7 | _ | |a 10.1038/s41550-023-02147-x |2 doi |
024 | 7 | _ | |a altmetric:158203508 |2 altmetric |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01494 |2 datacite_doi |
024 | 7 | _ | |a WOS:001138168700001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4390674920 |
037 | _ | _ | |a PUBDB-2024-01494 |
041 | _ | _ | |a English |
082 | _ | _ | |a 520 |
100 | 1 | _ | |a Frost, Mungo |0 P:(DE-H253)PIP1019042 |b 0 |e Corresponding author |
245 | _ | _ | |a Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions |
260 | _ | _ | |a London |c 2024 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1716277961_4049416 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The pressure and temperature conditions at which precipitation of diamond occurs from hydrocarbon mixtures is important for modelling the interior dynamics of icy planets. However, there is substantial disagreement from laboratory experiments, with those using dynamic compression techniques finding much more extreme conditions are required than in static compression. Here we report the time-resolved observation of diamond formation from statically compressed polystyrene, (C$_8$H$_8$)$_n$, heated using the 4.5 MHz X-ray pulse trains at the European X-ray Free Electron Laser facility. Diamond formation is observed above 2,500 K from 19 GPa to 27 GPa, conditions representative of Uranus’s and Neptune’s shallow interiors, on 30 μs to 40 μs timescales. This is much slower than may be observed during the ∼10 ns duration of typical dynamic compression experiments, revealing reaction kinetics to be the reason for the discrepancy. Reduced pressure and temperature conditions for diamond formation has implications for icy planetary interiors, where diamond subduction leads to heating and could drive convection in the conductive ice layer that has a role in their magnetic fields. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
542 | _ | _ | |i 2024-01-08 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
542 | _ | _ | |i 2024-01-08 |2 Crossref |u https://www.springernature.com/gp/researchers/text-and-data-mining |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P02.2 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.2-20150101 |6 EXP:(DE-H253)P-P02.2-20150101 |x 0 |
700 | 1 | _ | |a McWilliams, R. Stewart |0 P:(DE-H253)PIP1021535 |b 1 |
700 | 1 | _ | |a Bykova, Elena |0 P:(DE-H253)PIP1015382 |b 2 |
700 | 1 | _ | |a Bykov, Maxim |0 P:(DE-H253)PIP1014098 |b 3 |
700 | 1 | _ | |a Husband, Rachel J. |0 P:(DE-H253)PIP1016653 |b 4 |
700 | 1 | _ | |a Andriambariarijaona, Leon M. |0 P:(DE-H253)PIP1098592 |b 5 |
700 | 1 | _ | |a Khandarkhaeva, Saiana |0 P:(DE-H253)PIP1080485 |b 6 |
700 | 1 | _ | |a Massani, Bernhard |0 P:(DE-H253)PIP1026549 |b 7 |
700 | 1 | _ | |a Appel, Karen |0 P:(DE-H253)PIP1001646 |b 8 |
700 | 1 | _ | |a Baehtz, Carsten |0 P:(DE-H253)PIP1009336 |b 9 |
700 | 1 | _ | |a Ball, Orianna B. |b 10 |
700 | 1 | _ | |a Cerantola, Valerio |b 11 |
700 | 1 | _ | |a Chariton, Stella |b 12 |
700 | 1 | _ | |a Choi, Jinhyuk |b 13 |
700 | 1 | _ | |a Cynn, Hyunchae |b 14 |
700 | 1 | _ | |a Duff, Matthew J. |b 15 |
700 | 1 | _ | |a Dwivedi, Anand |b 16 |
700 | 1 | _ | |a Edmund, Eric |0 P:(DE-H253)PIP1087596 |b 17 |
700 | 1 | _ | |a Fiquet, Guillaume |0 P:(DE-H253)PIP1028998 |b 18 |
700 | 1 | _ | |a Graafsma, Heinz |0 P:(DE-H253)PIP1005340 |b 19 |
700 | 1 | _ | |a Hwang, Huijeong |b 20 |
700 | 1 | _ | |a Jaisle, Nicolas |b 21 |
700 | 1 | _ | |a Kim, Jaeyong |b 22 |
700 | 1 | _ | |a Konôpková, Zuzana |b 23 |
700 | 1 | _ | |a Laurus, Torsten |0 P:(DE-H253)PIP1006959 |b 24 |
700 | 1 | _ | |a Lee, Yongjae |b 25 |
700 | 1 | _ | |a Liermann, Hanns-Peter |0 P:(DE-H253)PIP1007496 |b 26 |
700 | 1 | _ | |a McHardy, James D. |b 27 |
700 | 1 | _ | |a McMahon, Malcolm I. |0 P:(DE-H253)PIP1015415 |b 28 |
700 | 1 | _ | |a Morard, Guillaume |b 29 |
700 | 1 | _ | |a Nakatsutsumi, Motoaki |0 P:(DE-H253)PIP1017893 |b 30 |
700 | 1 | _ | |a Nguyen, Lan Anh |b 31 |
700 | 1 | _ | |a Ninet, Sandra |b 32 |
700 | 1 | _ | |a Prakapenka, Vitali B. |b 33 |
700 | 1 | _ | |a Prescher, Clemens |0 P:(DE-H253)PIP1014506 |b 34 |
700 | 1 | _ | |a Redmer, Ronald |b 35 |
700 | 1 | _ | |a Stern, Stephan |0 P:(DE-H253)PIP1011474 |b 36 |
700 | 1 | _ | |a Strohm, Cornelius |0 P:(DE-H253)PIP1017102 |b 37 |
700 | 1 | _ | |a Sztuk-Dambietz, Jolanta |0 P:(DE-H253)PIP1005470 |b 38 |
700 | 1 | _ | |a Turcato, Monica |0 P:(DE-H253)PIP1005920 |b 39 |
700 | 1 | _ | |a Wu, Zhongyan |b 40 |
700 | 1 | _ | |a Glenzer, Siegfried H. |b 41 |
700 | 1 | _ | |a Goncharov, Alexander F. |0 P:(DE-H253)PIP1015299 |b 42 |
773 | 1 | 8 | |a 10.1038/s41550-023-02147-x |b Springer Science and Business Media LLC |d 2024-01-08 |n 2 |p 174-181 |3 journal-article |2 Crossref |t Nature Astronomy |v 8 |y 2024 |x 2397-3366 |
773 | _ | _ | |a 10.1038/s41550-023-02147-x |g Vol. 8, no. 2, p. 174 - 181 |0 PERI:(DE-600)2879712-7 |n 2 |p 174-181 |t Nature astronomy |v 8 |y 2024 |x 2397-3366 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf |
856 | 4 | _ | |y Published on 2024-01-08. Available in OpenAccess from 2024-07-08. |u https://bib-pubdb1.desy.de/record/605543/files/document.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf?subformat=pdfa |
856 | 4 | _ | |y Published on 2024-01-08. Available in OpenAccess from 2024-07-08. |x pdfa |u https://bib-pubdb1.desy.de/record/605543/files/document.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:605543 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1019042 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1021535 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1015382 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1014098 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1016653 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1016653 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1098592 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1080485 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1026549 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1001646 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1009336 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 9 |6 P:(DE-H253)PIP1009336 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-H253)PIP1087596 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1028998 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 19 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 19 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 19 |6 P:(DE-H253)PIP1005340 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 24 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 24 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 24 |6 P:(DE-H253)PIP1006959 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 26 |6 P:(DE-H253)PIP1007496 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 26 |6 P:(DE-H253)PIP1007496 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 28 |6 P:(DE-H253)PIP1015415 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 30 |6 P:(DE-H253)PIP1017893 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 34 |6 P:(DE-H253)PIP1014506 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 36 |6 P:(DE-H253)PIP1011474 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 36 |6 P:(DE-H253)PIP1011474 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 37 |6 P:(DE-H253)PIP1017102 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 37 |6 P:(DE-H253)PIP1017102 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 38 |6 P:(DE-H253)PIP1005470 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 39 |6 P:(DE-H253)PIP1005920 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 42 |6 P:(DE-H253)PIP1015299 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-27 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT ASTRON : 2022 |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT ASTRON : 2022 |d 2024-12-28 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-HIBEF-20240110 |k FS-HIBEF |l FS-PS Fachgruppe HIBEF |x 1 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_E1_HED-20210408 |k XFEL_E1_HED |l HED |x 2 |
920 | 1 | _ | |0 I:(DE-H253)CFEL-DRD-20160910 |k CFEL-DRD |l FS-DS |x 3 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_DO_DD_DET-20210408 |k XFEL_DO_DD_DET |l Detector Operations |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-HIBEF-20240110 |
980 | _ | _ | |a I:(DE-H253)XFEL_E1_HED-20210408 |
980 | _ | _ | |a I:(DE-H253)CFEL-DRD-20160910 |
980 | _ | _ | |a I:(DE-H253)XFEL_DO_DD_DET-20210408 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.3847/1538-4357/aa8b14 |9 -- missing cx lookup -- |1 M Bethkenhagen |p 67 - |2 Crossref |u Bethkenhagen, M. et al. Planetary ices and the linear mixing approximation. Astrophys. J. 848, 67 (2017). |t Astrophys. J. |v 848 |y 2017 |
999 | C | 5 | |a 10.1051/0004-6361/201936378 |9 -- missing cx lookup -- |1 L Scheibe |p A70 - |2 Crossref |u Scheibe, L., Nettelmann, N. & Redmer, R. Thermal evolution of Uranus and Neptune—I. Adiabatic models. Astron. Astrophys. 632, A70 (2019). |t Astron. Astrophys. |v 632 |y 2019 |
999 | C | 5 | |a 10.1038/s41550-020-1054-y |9 -- missing cx lookup -- |1 D Qasim |p 781 - |2 Crossref |u Qasim, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 4, 781–785 (2020). |t Nat. Astron. |v 4 |y 2020 |
999 | C | 5 | |a 10.1126/science.286.5437.100 |9 -- missing cx lookup -- |1 LR Benedetti |p 100 - |2 Crossref |u Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999). |t Science |v 286 |y 1999 |
999 | C | 5 | |a 10.1016/j.pepi.2008.06.011 |9 -- missing cx lookup -- |1 H Hirai |p 242 - |2 Crossref |u Hirai, H., Konagai, K., Kawamura, T., Yamamoto, Y. & Yagi, T. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter. 174, 242–246 (2009). |t Phys. Earth Planet. Inter. |v 174 |y 2009 |
999 | C | 5 | |a 10.1038/s41550-017-0219-9 |9 -- missing cx lookup -- |1 D Kraus |p 606 - |2 Crossref |u Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017). |t Nat. Astron. |v 1 |y 2017 |
999 | C | 5 | |a 10.1038/s41467-023-36841-1 |9 -- missing cx lookup -- |2 Crossref |u Cheng, B., Hamel, S. & Bethkenhagen, M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nat. Commun. 14, 1104 (2023). |
999 | C | 5 | |a 10.1038/ncomms3446 |9 -- missing cx lookup -- |2 Crossref |u Lobanov, S. S. et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2446 (2013). |
999 | C | 5 | |a 10.1038/ngeo591 |9 -- missing cx lookup -- |1 A Kolesnikov |p 566 - |2 Crossref |u Kolesnikov, A., Kutcherov, V. G. & Goncharov, A. F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2, 566–570 (2009). |t Nat. Geosci. |v 2 |y 2009 |
999 | C | 5 | |a 10.1073/pnas.1014804108 |9 -- missing cx lookup -- |1 L Spanu |p 6843 - |2 Crossref |u Spanu, L., Donadio, D., Hohl, D., Schwegler, E. & Galli, G. Stability of hydrocarbons at deep Earth pressures and temperatures. Proc. Natl Acad. Sci. USA 108, 6843–6846 (2011). |t Proc. Natl Acad. Sci. USA |v 108 |y 2011 |
999 | C | 5 | |a 10.1021/acs.jpcc.9b01353 |9 -- missing cx lookup -- |1 AS Naumova |p 20497 - |2 Crossref |u Naumova, A. S., Lepeshkin, S. V. & Oganov, A. R. Hydrocarbons under pressure: phase diagrams and surprising new compounds in the C–H system. J. Phys. Chem. C 123, 20497–20501 (2019). |t J. Phys. Chem. C |v 123 |y 2019 |
999 | C | 5 | |a 10.1038/292435a0 |9 -- missing cx lookup -- |1 M Ross |p 435 - |2 Crossref |u Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981). |t Nature |v 292 |y 1981 |
999 | C | 5 | |a 10.1088/2041-8205/759/2/L32 |9 -- missing cx lookup -- |1 M Podolak |p L32 - |2 Crossref |u Podolak, M. & Helled, R. What do we really know about Uranus and Neptune? Astrophys. J. Lett. 759, L32 (2012). |t Astrophys. J. Lett. |v 759 |y 2012 |
999 | C | 5 | |a 10.3847/1538-4357/abbfb1 |9 -- missing cx lookup -- |1 AA Piette |p 154 - |2 Crossref |u Piette, A. A. & Madhusudhan, N. On the temperature profiles and emission spectra of mini-Neptune atmospheres. Astrophys. J. 904, 154 (2020). |t Astrophys. J. |v 904 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevB.83.214106 |9 -- missing cx lookup -- |1 T Scheler |p 214106 - |2 Crossref |u Scheler, T. et al. Synthesis and properties of platinum hydride. Phys. Rev. B 83, 214106 (2011). |t Phys. Rev. B |v 83 |y 2011 |
999 | C | 5 | |a 10.1002/admi.202202081 |9 -- missing cx lookup -- |1 M Frost |p 2202081 - |2 Crossref |u Frost, M., McBride, E. E., Smith, D., Smith, J. S. & Glenzer, S. H. Pressure driven alkane dehydrogenation by palladium metal. Adv. Mater. Interfaces 10, 2202081 (2023). |t Adv. Mater. Interfaces |v 10 |y 2023 |
999 | C | 5 | |a 10.1080/08957950600608931 |9 -- missing cx lookup -- |1 A Zerr |p 23 - |2 Crossref |u Zerr, A., Serghiou, G., Boehler, R. & Ross, M. Decomposition of alkanes at high pressures and temperatures. High Press. Res. 26, 23–32 (2006). |t High Press. Res. |v 26 |y 2006 |
999 | C | 5 | |a 10.1038/s41598-021-04206-7 |9 -- missing cx lookup -- |2 Crossref |u Watkins, E. et al. Diamond and methane formation from the chemical decomposition of polyethylene at high pressures and temperatures. Sci. Rep. 12, 631 (2022). |
999 | C | 5 | |a 10.1038/s41598-019-40782-5 |9 -- missing cx lookup -- |2 Crossref |u Hartley, N. et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa. Sci. Rep. 9, 4196 (2019). |
999 | C | 5 | |a 10.1063/1.5031907 |9 -- missing cx lookup -- |1 F Seiboth |p 221907 - |2 Crossref |u Seiboth, F. et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112, 221907 (2018). |t Appl. Phys. Lett. |v 112 |y 2018 |
999 | C | 5 | |a 10.1038/s41586-021-04281-w |9 -- missing cx lookup -- |1 A Zylstra |p 542 - |2 Crossref |u Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022). |t Nature |v 601 |y 2022 |
999 | C | 5 | |a 10.1063/1.5017908 |9 -- missing cx lookup -- |1 D Kraus |p 056313 - |2 Crossref |u Kraus, D. et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion. Phys. Plasmas 25, 056313 (2018). |t Phys. Plasmas |v 25 |y 2018 |
999 | C | 5 | |a 10.1073/pnas.1919067117 |9 -- missing cx lookup -- |1 F Nestola |p 25310 - |2 Crossref |u Nestola, F. et al. Impact shock origin of diamonds in ureilite meteorites. Proc. Natl Acad. Sci. USA 117, 25310–25318 (2020). |t Proc. Natl Acad. Sci. USA |v 117 |y 2020 |
999 | C | 5 | |a 10.1107/S1600577521007335 |9 -- missing cx lookup -- |1 U Zastrau |p 1393 - |2 Crossref |u Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021). |t J. Synchrotron Radiat. |v 28 |y 2021 |
999 | C | 5 | |a 10.1107/S1600577521002551 |9 -- missing cx lookup -- |1 H-P Liermann |p 688 - |2 Crossref |u Liermann, H.-P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Radiat. 28, 688–706 (2021). |t J. Synchrotron Radiat. |v 28 |y 2021 |
999 | C | 5 | |a 10.1063/1.5141360 |9 -- missing cx lookup -- |1 J Meza-Galvez |p 195902 - |2 Crossref |u Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard X-ray irradiation. J. Appl. Phys. 127, 195902 (2020). |t J. Appl. Phys. |v 127 |y 2020 |
999 | C | 5 | |a 10.1063/5.0142196 |9 -- missing cx lookup -- |1 OB Ball |p 055901 - |2 Crossref |u Ball, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and X-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023). |t J. Appl. Phys. |v 134 |y 2023 |
999 | C | 5 | |a 10.1073/pnas.1421801112 |9 -- missing cx lookup -- |1 RS McWilliams |p 7925 - |2 Crossref |u McWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015). |t Proc. Natl Acad. Sci. USA |v 112 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.116.255501 |9 -- missing cx lookup -- |1 RS McWilliams |p 255501 - |2 Crossref |u McWilliams, R. S., Dalton, D. A., Mahmood, M. F. & Goncharov, A. F. Optical properties of fluid hydrogen at the transition to a conducting state. Phys. Rev. Lett. 116, 255501 (2016). |t Phys. Rev. Lett. |v 116 |y 2016 |
999 | C | 5 | |a 10.1063/1.342969 |9 -- missing cx lookup -- |1 OL Anderson |p 1534 - |2 Crossref |u Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989). |t J. Appl. Phys. |v 65 |y 1989 |
999 | C | 5 | |a 10.1063/1.1539895 |9 -- missing cx lookup -- |1 C-S Zha |p 1255 - |2 Crossref |u Zha, C.-S. & Bassett, W. A. Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and raman scattering. Rev. Sci. Instrum. 74, 1255–1262 (2003). |t Rev. Sci. Instrum. |v 74 |y 2003 |
999 | C | 5 | |a 10.1103/PhysRevB.101.014106 |9 -- missing cx lookup -- |1 G Weck |p 014106 - |2 Crossref |u Weck, G. et al. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 101, 014106 (2020). |t Phys. Rev. B |v 101 |y 2020 |
999 | C | 5 | |a 10.1126/science.275.5304.1279 |9 -- missing cx lookup -- |1 W Hubbard |p 1279 - |2 Crossref |u Hubbard, W. Neptune’s deep chemistry. Science 275, 1279–1280 (1997). |t Science |v 275 |y 1997 |
999 | C | 5 | |a 10.1126/science.aaa7471 |9 -- missing cx lookup -- |1 MD Knudson |p 1455 - |2 Crossref |u Knudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015). |t Science |v 348 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.1707918114 |9 -- missing cx lookup -- |1 M Zaghoo |p 11873 - |2 Crossref |u Zaghoo, M. & Silvera, I. F. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. Proc. Natl Acad. Sci. USA 114, 11873–11877 (2017). |t Proc. Natl Acad. Sci. USA |v 114 |y 2017 |
999 | C | 5 | |a 10.1126/science.aat0970 |9 -- missing cx lookup -- |1 PM Celliers |p 677 - |2 Crossref |u Celliers, P. M. et al. Insulator-metal transition in dense fluid deuterium. Science 361, 677–682 (2018). |t Science |v 361 |y 2018 |
999 | C | 5 | |a 10.1002/advs.201901668 |9 -- missing cx lookup -- |1 S Jiang |p 1901668 - |2 Crossref |u Jiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020). |t Adv. Sci. |v 7 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevResearch.5.L022023 |9 -- missing cx lookup -- |1 D Kraus |p L022023 - |2 Crossref |u Kraus, D. et al. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons. Phys. Rev. Res. 5, L022023 (2023). |t Phys. Rev. Res. |v 5 |y 2023 |
999 | C | 5 | |a 10.1073/pnas.0510489103 |9 -- missing cx lookup -- |1 AA Correa |p 1204 - |2 Crossref |u Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006). |t Proc. Natl Acad. Sci. USA |v 103 |y 2006 |
999 | C | 5 | |a 10.1038/s41586-019-1114-6 |9 -- missing cx lookup -- |1 M Millot |p 251 - |2 Crossref |u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019). |t Nature |v 569 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.128.165701 |9 -- missing cx lookup -- |1 G Weck |p 165701 - |2 Crossref |u Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022). |t Phys. Rev. Lett. |v 128 |y 2022 |
999 | C | 5 | |a 10.1038/s41567-021-01351-8 |9 -- missing cx lookup -- |1 VB Prakapenka |p 1233 - |2 Crossref |u Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021). |t Nat. Phys. |v 17 |y 2021 |
999 | C | 5 | |a 10.1038/nature02376 |9 -- missing cx lookup -- |1 S Stanley |p 151 - |2 Crossref |u Stanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004). |t Nature |v 428 |y 2004 |
999 | C | 5 | |a 10.1126/science.283.5398.44 |9 -- missing cx lookup -- |1 C Cavazzoni |p 44 - |2 Crossref |u Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999). |t Science |v 283 |y 1999 |
999 | C | 5 | |a 10.1016/j.icarus.2010.08.008 |9 -- missing cx lookup -- |1 R Redmer |p 798 - |2 Crossref |u Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011). |t Icarus |v 211 |y 2011 |
999 | C | 5 | |a 10.1098/rsta.2019.0479 |9 -- missing cx lookup -- |1 K Soderlund |p 20190479 - |2 Crossref |u Soderlund, K. & Stanley, S. The underexplored frontier of ice giant dynamos. Phil. Trans. R. Soc. A 378, 20190479 (2020). |t Phil. Trans. R. Soc. A |v 378 |y 2020 |
999 | C | 5 | |a 10.1038/s41550-018-0397-0 |9 -- missing cx lookup -- |1 SM Hörst |p 303 - |2 Crossref |u Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018). |t Nat. Astron. |v 2 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevB.78.104102 |9 -- missing cx lookup -- |1 A Dewaele |p 104102 - |2 Crossref |u Dewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102 (2008). |t Phys. Rev. B |v 78 |y 2008 |
999 | C | 5 | |a 10.1088/1748-0221/15/05/P05004 |9 -- missing cx lookup -- |1 M Frost |p P05004 - |2 Crossref |u Frost, M., Curry, C. & Glenzer, S. Laser cutting apparatus for high energy density and diamond anvil cell science. J. Instrum. 15, P05004 (2020). |t J. Instrum. |v 15 |y 2020 |
999 | C | 5 | |a 10.1107/S1600577515005937 |9 -- missing cx lookup -- |1 H-P Liermann |p 908 - |2 Crossref |u Liermann, H.-P. et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA II. J. Synchrotron Radiat. 22, 908–924 (2015). |t J. Synchrotron Radiat. |v 22 |y 2015 |
999 | C | 5 | |a 10.1088/1748-0221/10/01/C01023 |9 -- missing cx lookup -- |1 A Allahgholi |p C01023 - |2 Crossref |u Allahgholi, A. et al. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 10, C01023 (2015). |t J. Instrum. |v 10 |y 2015 |
999 | C | 5 | |a 10.1107/S1600577518016077 |9 -- missing cx lookup -- |1 A Allahgholi |p 74 - |2 Crossref |u Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019). |t J. Synchrotron Radiat. |v 26 |y 2019 |
999 | C | 5 | |a 10.1063/1.3652863 |9 -- missing cx lookup -- |1 T Scheler |p 214501 - |2 Crossref |u Scheler, T., Degtyareva, O. & Gregoryanz, E. On the effects of high temperature and high pressure on the hydrogen solubility in rhenium. J. Chem. Phys. 135, 214501 (2011). |t J. Chem. Phys. |v 135 |y 2011 |
999 | C | 5 | |a 10.1107/S1600577519003795 |9 -- missing cx lookup -- |1 T Maltezopoulos |p 1045 - |2 Crossref |u Maltezopoulos, T. et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 26, 1045–1051 (2019). |t J. Synchrotron Radiat. |v 26 |y 2019 |
999 | C | 5 | |a 10.1063/1.1148970 |9 -- missing cx lookup -- |1 A Dewaele |p 2421 - |2 Crossref |u Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond-anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998). |t Rev. Sci. Instrum. |v 69 |y 1998 |
999 | C | 5 | |a 10.1038/s43246-021-00158-7 |9 -- missing cx lookup -- |2 Crossref |u Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 61 (2021). |
999 | C | 5 | |a 10.1126/sciadv.abo0617 |9 -- missing cx lookup -- |1 Z He |p eabo0617 - |2 Crossref |u He, Z. et al. Diamond formation kinetics in shock-compressed C–H–O samples recorded by small-angle X-ray scattering and X-ray diffraction. Sci. Adv. 8, eabo0617 (2022). |t Sci. Adv. |v 8 |y 2022 |
999 | C | 5 | |a 10.1103/PhysRevLett.95.185701 |9 -- missing cx lookup -- |1 X Wang |p 185701 - |2 Crossref |u Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005). |t Phys. Rev. Lett. |v 95 |y 2005 |
999 | C | 5 | |a 10.3847/PSJ/ac390a |9 -- missing cx lookup -- |1 N Nettelmann |p 241 - |2 Crossref |u Nettelmann, N. et al. Theory of figures to the seventh order and the interiors of Jupiter and Saturn. Planet. Sci. J. 2, 241 (2021). |t Planet. Sci. J. |v 2 |y 2021 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|