001     605543
005     20250715170745.0
024 7 _ |a 10.1038/s41550-023-02147-x
|2 doi
024 7 _ |a altmetric:158203508
|2 altmetric
024 7 _ |a 10.3204/PUBDB-2024-01494
|2 datacite_doi
024 7 _ |a WOS:001138168700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4390674920
037 _ _ |a PUBDB-2024-01494
041 _ _ |a English
082 _ _ |a 520
100 1 _ |a Frost, Mungo
|0 P:(DE-H253)PIP1019042
|b 0
|e Corresponding author
245 _ _ |a Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions
260 _ _ |a London
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716277961_4049416
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The pressure and temperature conditions at which precipitation of diamond occurs from hydrocarbon mixtures is important for modelling the interior dynamics of icy planets. However, there is substantial disagreement from laboratory experiments, with those using dynamic compression techniques finding much more extreme conditions are required than in static compression. Here we report the time-resolved observation of diamond formation from statically compressed polystyrene, (C$_8$H$_8$)$_n$, heated using the 4.5 MHz X-ray pulse trains at the European X-ray Free Electron Laser facility. Diamond formation is observed above 2,500 K from 19 GPa to 27 GPa, conditions representative of Uranus’s and Neptune’s shallow interiors, on 30 μs to 40 μs timescales. This is much slower than may be observed during the ∼10 ns duration of typical dynamic compression experiments, revealing reaction kinetics to be the reason for the discrepancy. Reduced pressure and temperature conditions for diamond formation has implications for icy planetary interiors, where diamond subduction leads to heating and could drive convection in the conductive ice layer that has a role in their magnetic fields.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
542 _ _ |i 2024-01-08
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
542 _ _ |i 2024-01-08
|2 Crossref
|u https://www.springernature.com/gp/researchers/text-and-data-mining
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a McWilliams, R. Stewart
|0 P:(DE-H253)PIP1021535
|b 1
700 1 _ |a Bykova, Elena
|0 P:(DE-H253)PIP1015382
|b 2
700 1 _ |a Bykov, Maxim
|0 P:(DE-H253)PIP1014098
|b 3
700 1 _ |a Husband, Rachel J.
|0 P:(DE-H253)PIP1016653
|b 4
700 1 _ |a Andriambariarijaona, Leon M.
|0 P:(DE-H253)PIP1098592
|b 5
700 1 _ |a Khandarkhaeva, Saiana
|0 P:(DE-H253)PIP1080485
|b 6
700 1 _ |a Massani, Bernhard
|0 P:(DE-H253)PIP1026549
|b 7
700 1 _ |a Appel, Karen
|0 P:(DE-H253)PIP1001646
|b 8
700 1 _ |a Baehtz, Carsten
|0 P:(DE-H253)PIP1009336
|b 9
700 1 _ |a Ball, Orianna B.
|b 10
700 1 _ |a Cerantola, Valerio
|b 11
700 1 _ |a Chariton, Stella
|b 12
700 1 _ |a Choi, Jinhyuk
|b 13
700 1 _ |a Cynn, Hyunchae
|b 14
700 1 _ |a Duff, Matthew J.
|b 15
700 1 _ |a Dwivedi, Anand
|b 16
700 1 _ |a Edmund, Eric
|0 P:(DE-H253)PIP1087596
|b 17
700 1 _ |a Fiquet, Guillaume
|0 P:(DE-H253)PIP1028998
|b 18
700 1 _ |a Graafsma, Heinz
|0 P:(DE-H253)PIP1005340
|b 19
700 1 _ |a Hwang, Huijeong
|b 20
700 1 _ |a Jaisle, Nicolas
|b 21
700 1 _ |a Kim, Jaeyong
|b 22
700 1 _ |a Konôpková, Zuzana
|b 23
700 1 _ |a Laurus, Torsten
|0 P:(DE-H253)PIP1006959
|b 24
700 1 _ |a Lee, Yongjae
|b 25
700 1 _ |a Liermann, Hanns-Peter
|0 P:(DE-H253)PIP1007496
|b 26
700 1 _ |a McHardy, James D.
|b 27
700 1 _ |a McMahon, Malcolm I.
|0 P:(DE-H253)PIP1015415
|b 28
700 1 _ |a Morard, Guillaume
|b 29
700 1 _ |a Nakatsutsumi, Motoaki
|0 P:(DE-H253)PIP1017893
|b 30
700 1 _ |a Nguyen, Lan Anh
|b 31
700 1 _ |a Ninet, Sandra
|b 32
700 1 _ |a Prakapenka, Vitali B.
|b 33
700 1 _ |a Prescher, Clemens
|0 P:(DE-H253)PIP1014506
|b 34
700 1 _ |a Redmer, Ronald
|b 35
700 1 _ |a Stern, Stephan
|0 P:(DE-H253)PIP1011474
|b 36
700 1 _ |a Strohm, Cornelius
|0 P:(DE-H253)PIP1017102
|b 37
700 1 _ |a Sztuk-Dambietz, Jolanta
|0 P:(DE-H253)PIP1005470
|b 38
700 1 _ |a Turcato, Monica
|0 P:(DE-H253)PIP1005920
|b 39
700 1 _ |a Wu, Zhongyan
|b 40
700 1 _ |a Glenzer, Siegfried H.
|b 41
700 1 _ |a Goncharov, Alexander F.
|0 P:(DE-H253)PIP1015299
|b 42
773 1 8 |a 10.1038/s41550-023-02147-x
|b Springer Science and Business Media LLC
|d 2024-01-08
|n 2
|p 174-181
|3 journal-article
|2 Crossref
|t Nature Astronomy
|v 8
|y 2024
|x 2397-3366
773 _ _ |a 10.1038/s41550-023-02147-x
|g Vol. 8, no. 2, p. 174 - 181
|0 PERI:(DE-600)2879712-7
|n 2
|p 174-181
|t Nature astronomy
|v 8
|y 2024
|x 2397-3366
856 4 _ |u https://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf
856 4 _ |y Published on 2024-01-08. Available in OpenAccess from 2024-07-08.
|u https://bib-pubdb1.desy.de/record/605543/files/document.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf?subformat=pdfa
856 4 _ |y Published on 2024-01-08. Available in OpenAccess from 2024-07-08.
|x pdfa
|u https://bib-pubdb1.desy.de/record/605543/files/document.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:605543
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1019042
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1021535
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1015382
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1014098
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1016653
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1016653
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1098592
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1080485
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1026549
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1001646
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1009336
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1009336
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1087596
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1028998
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1005340
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 19
|6 P:(DE-H253)PIP1005340
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1005340
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 24
|6 P:(DE-H253)PIP1006959
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 24
|6 P:(DE-H253)PIP1006959
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 24
|6 P:(DE-H253)PIP1006959
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 26
|6 P:(DE-H253)PIP1007496
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 26
|6 P:(DE-H253)PIP1007496
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 28
|6 P:(DE-H253)PIP1015415
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 30
|6 P:(DE-H253)PIP1017893
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-H253)PIP1014506
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 36
|6 P:(DE-H253)PIP1011474
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 36
|6 P:(DE-H253)PIP1011474
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 37
|6 P:(DE-H253)PIP1017102
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 37
|6 P:(DE-H253)PIP1017102
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 38
|6 P:(DE-H253)PIP1005470
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 39
|6 P:(DE-H253)PIP1005920
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 42
|6 P:(DE-H253)PIP1015299
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT ASTRON : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT ASTRON : 2022
|d 2024-12-28
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-HIBEF-20240110
|k FS-HIBEF
|l FS-PS Fachgruppe HIBEF
|x 1
920 1 _ |0 I:(DE-H253)XFEL_E1_HED-20210408
|k XFEL_E1_HED
|l HED
|x 2
920 1 _ |0 I:(DE-H253)CFEL-DRD-20160910
|k CFEL-DRD
|l FS-DS
|x 3
920 1 _ |0 I:(DE-H253)XFEL_DO_DD_DET-20210408
|k XFEL_DO_DD_DET
|l Detector Operations
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-HIBEF-20240110
980 _ _ |a I:(DE-H253)XFEL_E1_HED-20210408
980 _ _ |a I:(DE-H253)CFEL-DRD-20160910
980 _ _ |a I:(DE-H253)XFEL_DO_DD_DET-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.3847/1538-4357/aa8b14
|9 -- missing cx lookup --
|1 M Bethkenhagen
|p 67 -
|2 Crossref
|u Bethkenhagen, M. et al. Planetary ices and the linear mixing approximation. Astrophys. J. 848, 67 (2017).
|t Astrophys. J.
|v 848
|y 2017
999 C 5 |a 10.1051/0004-6361/201936378
|9 -- missing cx lookup --
|1 L Scheibe
|p A70 -
|2 Crossref
|u Scheibe, L., Nettelmann, N. & Redmer, R. Thermal evolution of Uranus and Neptune—I. Adiabatic models. Astron. Astrophys. 632, A70 (2019).
|t Astron. Astrophys.
|v 632
|y 2019
999 C 5 |a 10.1038/s41550-020-1054-y
|9 -- missing cx lookup --
|1 D Qasim
|p 781 -
|2 Crossref
|u Qasim, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 4, 781–785 (2020).
|t Nat. Astron.
|v 4
|y 2020
999 C 5 |a 10.1126/science.286.5437.100
|9 -- missing cx lookup --
|1 LR Benedetti
|p 100 -
|2 Crossref
|u Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).
|t Science
|v 286
|y 1999
999 C 5 |a 10.1016/j.pepi.2008.06.011
|9 -- missing cx lookup --
|1 H Hirai
|p 242 -
|2 Crossref
|u Hirai, H., Konagai, K., Kawamura, T., Yamamoto, Y. & Yagi, T. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter. 174, 242–246 (2009).
|t Phys. Earth Planet. Inter.
|v 174
|y 2009
999 C 5 |a 10.1038/s41550-017-0219-9
|9 -- missing cx lookup --
|1 D Kraus
|p 606 -
|2 Crossref
|u Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).
|t Nat. Astron.
|v 1
|y 2017
999 C 5 |a 10.1038/s41467-023-36841-1
|9 -- missing cx lookup --
|2 Crossref
|u Cheng, B., Hamel, S. & Bethkenhagen, M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nat. Commun. 14, 1104 (2023).
999 C 5 |a 10.1038/ncomms3446
|9 -- missing cx lookup --
|2 Crossref
|u Lobanov, S. S. et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2446 (2013).
999 C 5 |a 10.1038/ngeo591
|9 -- missing cx lookup --
|1 A Kolesnikov
|p 566 -
|2 Crossref
|u Kolesnikov, A., Kutcherov, V. G. & Goncharov, A. F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2, 566–570 (2009).
|t Nat. Geosci.
|v 2
|y 2009
999 C 5 |a 10.1073/pnas.1014804108
|9 -- missing cx lookup --
|1 L Spanu
|p 6843 -
|2 Crossref
|u Spanu, L., Donadio, D., Hohl, D., Schwegler, E. & Galli, G. Stability of hydrocarbons at deep Earth pressures and temperatures. Proc. Natl Acad. Sci. USA 108, 6843–6846 (2011).
|t Proc. Natl Acad. Sci. USA
|v 108
|y 2011
999 C 5 |a 10.1021/acs.jpcc.9b01353
|9 -- missing cx lookup --
|1 AS Naumova
|p 20497 -
|2 Crossref
|u Naumova, A. S., Lepeshkin, S. V. & Oganov, A. R. Hydrocarbons under pressure: phase diagrams and surprising new compounds in the C–H system. J. Phys. Chem. C 123, 20497–20501 (2019).
|t J. Phys. Chem. C
|v 123
|y 2019
999 C 5 |a 10.1038/292435a0
|9 -- missing cx lookup --
|1 M Ross
|p 435 -
|2 Crossref
|u Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).
|t Nature
|v 292
|y 1981
999 C 5 |a 10.1088/2041-8205/759/2/L32
|9 -- missing cx lookup --
|1 M Podolak
|p L32 -
|2 Crossref
|u Podolak, M. & Helled, R. What do we really know about Uranus and Neptune? Astrophys. J. Lett. 759, L32 (2012).
|t Astrophys. J. Lett.
|v 759
|y 2012
999 C 5 |a 10.3847/1538-4357/abbfb1
|9 -- missing cx lookup --
|1 AA Piette
|p 154 -
|2 Crossref
|u Piette, A. A. & Madhusudhan, N. On the temperature profiles and emission spectra of mini-Neptune atmospheres. Astrophys. J. 904, 154 (2020).
|t Astrophys. J.
|v 904
|y 2020
999 C 5 |a 10.1103/PhysRevB.83.214106
|9 -- missing cx lookup --
|1 T Scheler
|p 214106 -
|2 Crossref
|u Scheler, T. et al. Synthesis and properties of platinum hydride. Phys. Rev. B 83, 214106 (2011).
|t Phys. Rev. B
|v 83
|y 2011
999 C 5 |a 10.1002/admi.202202081
|9 -- missing cx lookup --
|1 M Frost
|p 2202081 -
|2 Crossref
|u Frost, M., McBride, E. E., Smith, D., Smith, J. S. & Glenzer, S. H. Pressure driven alkane dehydrogenation by palladium metal. Adv. Mater. Interfaces 10, 2202081 (2023).
|t Adv. Mater. Interfaces
|v 10
|y 2023
999 C 5 |a 10.1080/08957950600608931
|9 -- missing cx lookup --
|1 A Zerr
|p 23 -
|2 Crossref
|u Zerr, A., Serghiou, G., Boehler, R. & Ross, M. Decomposition of alkanes at high pressures and temperatures. High Press. Res. 26, 23–32 (2006).
|t High Press. Res.
|v 26
|y 2006
999 C 5 |a 10.1038/s41598-021-04206-7
|9 -- missing cx lookup --
|2 Crossref
|u Watkins, E. et al. Diamond and methane formation from the chemical decomposition of polyethylene at high pressures and temperatures. Sci. Rep. 12, 631 (2022).
999 C 5 |a 10.1038/s41598-019-40782-5
|9 -- missing cx lookup --
|2 Crossref
|u Hartley, N. et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa. Sci. Rep. 9, 4196 (2019).
999 C 5 |a 10.1063/1.5031907
|9 -- missing cx lookup --
|1 F Seiboth
|p 221907 -
|2 Crossref
|u Seiboth, F. et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112, 221907 (2018).
|t Appl. Phys. Lett.
|v 112
|y 2018
999 C 5 |a 10.1038/s41586-021-04281-w
|9 -- missing cx lookup --
|1 A Zylstra
|p 542 -
|2 Crossref
|u Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022).
|t Nature
|v 601
|y 2022
999 C 5 |a 10.1063/1.5017908
|9 -- missing cx lookup --
|1 D Kraus
|p 056313 -
|2 Crossref
|u Kraus, D. et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion. Phys. Plasmas 25, 056313 (2018).
|t Phys. Plasmas
|v 25
|y 2018
999 C 5 |a 10.1073/pnas.1919067117
|9 -- missing cx lookup --
|1 F Nestola
|p 25310 -
|2 Crossref
|u Nestola, F. et al. Impact shock origin of diamonds in ureilite meteorites. Proc. Natl Acad. Sci. USA 117, 25310–25318 (2020).
|t Proc. Natl Acad. Sci. USA
|v 117
|y 2020
999 C 5 |a 10.1107/S1600577521007335
|9 -- missing cx lookup --
|1 U Zastrau
|p 1393 -
|2 Crossref
|u Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |a 10.1107/S1600577521002551
|9 -- missing cx lookup --
|1 H-P Liermann
|p 688 -
|2 Crossref
|u Liermann, H.-P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Radiat. 28, 688–706 (2021).
|t J. Synchrotron Radiat.
|v 28
|y 2021
999 C 5 |a 10.1063/1.5141360
|9 -- missing cx lookup --
|1 J Meza-Galvez
|p 195902 -
|2 Crossref
|u Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard X-ray irradiation. J. Appl. Phys. 127, 195902 (2020).
|t J. Appl. Phys.
|v 127
|y 2020
999 C 5 |a 10.1063/5.0142196
|9 -- missing cx lookup --
|1 OB Ball
|p 055901 -
|2 Crossref
|u Ball, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and X-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023).
|t J. Appl. Phys.
|v 134
|y 2023
999 C 5 |a 10.1073/pnas.1421801112
|9 -- missing cx lookup --
|1 RS McWilliams
|p 7925 -
|2 Crossref
|u McWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015).
|t Proc. Natl Acad. Sci. USA
|v 112
|y 2015
999 C 5 |a 10.1103/PhysRevLett.116.255501
|9 -- missing cx lookup --
|1 RS McWilliams
|p 255501 -
|2 Crossref
|u McWilliams, R. S., Dalton, D. A., Mahmood, M. F. & Goncharov, A. F. Optical properties of fluid hydrogen at the transition to a conducting state. Phys. Rev. Lett. 116, 255501 (2016).
|t Phys. Rev. Lett.
|v 116
|y 2016
999 C 5 |a 10.1063/1.342969
|9 -- missing cx lookup --
|1 OL Anderson
|p 1534 -
|2 Crossref
|u Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989).
|t J. Appl. Phys.
|v 65
|y 1989
999 C 5 |a 10.1063/1.1539895
|9 -- missing cx lookup --
|1 C-S Zha
|p 1255 -
|2 Crossref
|u Zha, C.-S. & Bassett, W. A. Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and raman scattering. Rev. Sci. Instrum. 74, 1255–1262 (2003).
|t Rev. Sci. Instrum.
|v 74
|y 2003
999 C 5 |a 10.1103/PhysRevB.101.014106
|9 -- missing cx lookup --
|1 G Weck
|p 014106 -
|2 Crossref
|u Weck, G. et al. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 101, 014106 (2020).
|t Phys. Rev. B
|v 101
|y 2020
999 C 5 |a 10.1126/science.275.5304.1279
|9 -- missing cx lookup --
|1 W Hubbard
|p 1279 -
|2 Crossref
|u Hubbard, W. Neptune’s deep chemistry. Science 275, 1279–1280 (1997).
|t Science
|v 275
|y 1997
999 C 5 |a 10.1126/science.aaa7471
|9 -- missing cx lookup --
|1 MD Knudson
|p 1455 -
|2 Crossref
|u Knudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015).
|t Science
|v 348
|y 2015
999 C 5 |a 10.1073/pnas.1707918114
|9 -- missing cx lookup --
|1 M Zaghoo
|p 11873 -
|2 Crossref
|u Zaghoo, M. & Silvera, I. F. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. Proc. Natl Acad. Sci. USA 114, 11873–11877 (2017).
|t Proc. Natl Acad. Sci. USA
|v 114
|y 2017
999 C 5 |a 10.1126/science.aat0970
|9 -- missing cx lookup --
|1 PM Celliers
|p 677 -
|2 Crossref
|u Celliers, P. M. et al. Insulator-metal transition in dense fluid deuterium. Science 361, 677–682 (2018).
|t Science
|v 361
|y 2018
999 C 5 |a 10.1002/advs.201901668
|9 -- missing cx lookup --
|1 S Jiang
|p 1901668 -
|2 Crossref
|u Jiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020).
|t Adv. Sci.
|v 7
|y 2020
999 C 5 |a 10.1103/PhysRevResearch.5.L022023
|9 -- missing cx lookup --
|1 D Kraus
|p L022023 -
|2 Crossref
|u Kraus, D. et al. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons. Phys. Rev. Res. 5, L022023 (2023).
|t Phys. Rev. Res.
|v 5
|y 2023
999 C 5 |a 10.1073/pnas.0510489103
|9 -- missing cx lookup --
|1 AA Correa
|p 1204 -
|2 Crossref
|u Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).
|t Proc. Natl Acad. Sci. USA
|v 103
|y 2006
999 C 5 |a 10.1038/s41586-019-1114-6
|9 -- missing cx lookup --
|1 M Millot
|p 251 -
|2 Crossref
|u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).
|t Nature
|v 569
|y 2019
999 C 5 |a 10.1103/PhysRevLett.128.165701
|9 -- missing cx lookup --
|1 G Weck
|p 165701 -
|2 Crossref
|u Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1038/s41567-021-01351-8
|9 -- missing cx lookup --
|1 VB Prakapenka
|p 1233 -
|2 Crossref
|u Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021).
|t Nat. Phys.
|v 17
|y 2021
999 C 5 |a 10.1038/nature02376
|9 -- missing cx lookup --
|1 S Stanley
|p 151 -
|2 Crossref
|u Stanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004).
|t Nature
|v 428
|y 2004
999 C 5 |a 10.1126/science.283.5398.44
|9 -- missing cx lookup --
|1 C Cavazzoni
|p 44 -
|2 Crossref
|u Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).
|t Science
|v 283
|y 1999
999 C 5 |a 10.1016/j.icarus.2010.08.008
|9 -- missing cx lookup --
|1 R Redmer
|p 798 -
|2 Crossref
|u Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).
|t Icarus
|v 211
|y 2011
999 C 5 |a 10.1098/rsta.2019.0479
|9 -- missing cx lookup --
|1 K Soderlund
|p 20190479 -
|2 Crossref
|u Soderlund, K. & Stanley, S. The underexplored frontier of ice giant dynamos. Phil. Trans. R. Soc. A 378, 20190479 (2020).
|t Phil. Trans. R. Soc. A
|v 378
|y 2020
999 C 5 |a 10.1038/s41550-018-0397-0
|9 -- missing cx lookup --
|1 SM Hörst
|p 303 -
|2 Crossref
|u Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).
|t Nat. Astron.
|v 2
|y 2018
999 C 5 |a 10.1103/PhysRevB.78.104102
|9 -- missing cx lookup --
|1 A Dewaele
|p 104102 -
|2 Crossref
|u Dewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102 (2008).
|t Phys. Rev. B
|v 78
|y 2008
999 C 5 |a 10.1088/1748-0221/15/05/P05004
|9 -- missing cx lookup --
|1 M Frost
|p P05004 -
|2 Crossref
|u Frost, M., Curry, C. & Glenzer, S. Laser cutting apparatus for high energy density and diamond anvil cell science. J. Instrum. 15, P05004 (2020).
|t J. Instrum.
|v 15
|y 2020
999 C 5 |a 10.1107/S1600577515005937
|9 -- missing cx lookup --
|1 H-P Liermann
|p 908 -
|2 Crossref
|u Liermann, H.-P. et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA II. J. Synchrotron Radiat. 22, 908–924 (2015).
|t J. Synchrotron Radiat.
|v 22
|y 2015
999 C 5 |a 10.1088/1748-0221/10/01/C01023
|9 -- missing cx lookup --
|1 A Allahgholi
|p C01023 -
|2 Crossref
|u Allahgholi, A. et al. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 10, C01023 (2015).
|t J. Instrum.
|v 10
|y 2015
999 C 5 |a 10.1107/S1600577518016077
|9 -- missing cx lookup --
|1 A Allahgholi
|p 74 -
|2 Crossref
|u Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019).
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1063/1.3652863
|9 -- missing cx lookup --
|1 T Scheler
|p 214501 -
|2 Crossref
|u Scheler, T., Degtyareva, O. & Gregoryanz, E. On the effects of high temperature and high pressure on the hydrogen solubility in rhenium. J. Chem. Phys. 135, 214501 (2011).
|t J. Chem. Phys.
|v 135
|y 2011
999 C 5 |a 10.1107/S1600577519003795
|9 -- missing cx lookup --
|1 T Maltezopoulos
|p 1045 -
|2 Crossref
|u Maltezopoulos, T. et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 26, 1045–1051 (2019).
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1063/1.1148970
|9 -- missing cx lookup --
|1 A Dewaele
|p 2421 -
|2 Crossref
|u Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond-anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).
|t Rev. Sci. Instrum.
|v 69
|y 1998
999 C 5 |a 10.1038/s43246-021-00158-7
|9 -- missing cx lookup --
|2 Crossref
|u Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 61 (2021).
999 C 5 |a 10.1126/sciadv.abo0617
|9 -- missing cx lookup --
|1 Z He
|p eabo0617 -
|2 Crossref
|u He, Z. et al. Diamond formation kinetics in shock-compressed C–H–O samples recorded by small-angle X-ray scattering and X-ray diffraction. Sci. Adv. 8, eabo0617 (2022).
|t Sci. Adv.
|v 8
|y 2022
999 C 5 |a 10.1103/PhysRevLett.95.185701
|9 -- missing cx lookup --
|1 X Wang
|p 185701 -
|2 Crossref
|u Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).
|t Phys. Rev. Lett.
|v 95
|y 2005
999 C 5 |a 10.3847/PSJ/ac390a
|9 -- missing cx lookup --
|1 N Nettelmann
|p 241 -
|2 Crossref
|u Nettelmann, N. et al. Theory of figures to the seventh order and the interiors of Jupiter and Saturn. Planet. Sci. J. 2, 241 (2021).
|t Planet. Sci. J.
|v 2
|y 2021


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21