000605543 001__ 605543
000605543 005__ 20250715170745.0
000605543 0247_ $$2doi$$a10.1038/s41550-023-02147-x
000605543 0247_ $$2altmetric$$aaltmetric:158203508
000605543 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01494
000605543 0247_ $$2WOS$$aWOS:001138168700001
000605543 0247_ $$2openalex$$aopenalex:W4390674920
000605543 037__ $$aPUBDB-2024-01494
000605543 041__ $$aEnglish
000605543 082__ $$a520
000605543 1001_ $$0P:(DE-H253)PIP1019042$$aFrost, Mungo$$b0$$eCorresponding author
000605543 245__ $$aDiamond precipitation dynamics from hydrocarbons at icy planet interior conditions
000605543 260__ $$aLondon$$bNature Publishing Group$$c2024
000605543 3367_ $$2DRIVER$$aarticle
000605543 3367_ $$2DataCite$$aOutput Types/Journal article
000605543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716277961_4049416
000605543 3367_ $$2BibTeX$$aARTICLE
000605543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000605543 3367_ $$00$$2EndNote$$aJournal Article
000605543 520__ $$aThe pressure and temperature conditions at which precipitation of diamond occurs from hydrocarbon mixtures is important for modelling the interior dynamics of icy planets. However, there is substantial disagreement from laboratory experiments, with those using dynamic compression techniques finding much more extreme conditions are required than in static compression. Here we report the time-resolved observation of diamond formation from statically compressed polystyrene, (C$_8$H$_8$)$_n$, heated using the 4.5 MHz X-ray pulse trains at the European X-ray Free Electron Laser facility. Diamond formation is observed above 2,500 K from 19 GPa to 27 GPa, conditions representative of Uranus’s and Neptune’s shallow interiors, on 30 μs to 40 μs timescales. This is much slower than may be observed during the ∼10 ns duration of typical dynamic compression experiments, revealing reaction kinetics to be the reason for the discrepancy. Reduced pressure and temperature conditions for diamond formation has implications for icy planetary interiors, where diamond subduction leads to heating and could drive convection in the conductive ice layer that has a role in their magnetic fields.
000605543 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000605543 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000605543 542__ $$2Crossref$$i2024-01-08$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000605543 542__ $$2Crossref$$i2024-01-08$$uhttps://www.springernature.com/gp/researchers/text-and-data-mining
000605543 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000605543 693__ $$0EXP:(DE-H253)P-P02.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.2-20150101$$aPETRA III$$fPETRA Beamline P02.2$$x0
000605543 7001_ $$0P:(DE-H253)PIP1021535$$aMcWilliams, R. Stewart$$b1
000605543 7001_ $$0P:(DE-H253)PIP1015382$$aBykova, Elena$$b2
000605543 7001_ $$0P:(DE-H253)PIP1014098$$aBykov, Maxim$$b3
000605543 7001_ $$0P:(DE-H253)PIP1016653$$aHusband, Rachel J.$$b4
000605543 7001_ $$0P:(DE-H253)PIP1098592$$aAndriambariarijaona, Leon M.$$b5
000605543 7001_ $$0P:(DE-H253)PIP1080485$$aKhandarkhaeva, Saiana$$b6
000605543 7001_ $$0P:(DE-H253)PIP1026549$$aMassani, Bernhard$$b7
000605543 7001_ $$0P:(DE-H253)PIP1001646$$aAppel, Karen$$b8
000605543 7001_ $$0P:(DE-H253)PIP1009336$$aBaehtz, Carsten$$b9
000605543 7001_ $$aBall, Orianna B.$$b10
000605543 7001_ $$aCerantola, Valerio$$b11
000605543 7001_ $$aChariton, Stella$$b12
000605543 7001_ $$aChoi, Jinhyuk$$b13
000605543 7001_ $$aCynn, Hyunchae$$b14
000605543 7001_ $$aDuff, Matthew J.$$b15
000605543 7001_ $$aDwivedi, Anand$$b16
000605543 7001_ $$0P:(DE-H253)PIP1087596$$aEdmund, Eric$$b17
000605543 7001_ $$0P:(DE-H253)PIP1028998$$aFiquet, Guillaume$$b18
000605543 7001_ $$0P:(DE-H253)PIP1005340$$aGraafsma, Heinz$$b19
000605543 7001_ $$aHwang, Huijeong$$b20
000605543 7001_ $$aJaisle, Nicolas$$b21
000605543 7001_ $$aKim, Jaeyong$$b22
000605543 7001_ $$aKonôpková, Zuzana$$b23
000605543 7001_ $$0P:(DE-H253)PIP1006959$$aLaurus, Torsten$$b24
000605543 7001_ $$aLee, Yongjae$$b25
000605543 7001_ $$0P:(DE-H253)PIP1007496$$aLiermann, Hanns-Peter$$b26
000605543 7001_ $$aMcHardy, James D.$$b27
000605543 7001_ $$0P:(DE-H253)PIP1015415$$aMcMahon, Malcolm I.$$b28
000605543 7001_ $$aMorard, Guillaume$$b29
000605543 7001_ $$0P:(DE-H253)PIP1017893$$aNakatsutsumi, Motoaki$$b30
000605543 7001_ $$aNguyen, Lan Anh$$b31
000605543 7001_ $$aNinet, Sandra$$b32
000605543 7001_ $$aPrakapenka, Vitali B.$$b33
000605543 7001_ $$0P:(DE-H253)PIP1014506$$aPrescher, Clemens$$b34
000605543 7001_ $$aRedmer, Ronald$$b35
000605543 7001_ $$0P:(DE-H253)PIP1011474$$aStern, Stephan$$b36
000605543 7001_ $$0P:(DE-H253)PIP1017102$$aStrohm, Cornelius$$b37
000605543 7001_ $$0P:(DE-H253)PIP1005470$$aSztuk-Dambietz, Jolanta$$b38
000605543 7001_ $$0P:(DE-H253)PIP1005920$$aTurcato, Monica$$b39
000605543 7001_ $$aWu, Zhongyan$$b40
000605543 7001_ $$aGlenzer, Siegfried H.$$b41
000605543 7001_ $$0P:(DE-H253)PIP1015299$$aGoncharov, Alexander F.$$b42
000605543 77318 $$2Crossref$$3journal-article$$a10.1038/s41550-023-02147-x$$bSpringer Science and Business Media LLC$$d2024-01-08$$n2$$p174-181$$tNature Astronomy$$v8$$x2397-3366$$y2024
000605543 773__ $$0PERI:(DE-600)2879712-7$$a10.1038/s41550-023-02147-x$$gVol. 8, no. 2, p. 174 - 181$$n2$$p174-181$$tNature astronomy$$v8$$x2397-3366$$y2024
000605543 8564_ $$uhttps://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf
000605543 8564_ $$uhttps://bib-pubdb1.desy.de/record/605543/files/document.pdf$$yPublished on 2024-01-08. Available in OpenAccess from 2024-07-08.
000605543 8564_ $$uhttps://bib-pubdb1.desy.de/record/605543/files/s41550-023-02147-x.pdf?subformat=pdfa$$xpdfa
000605543 8564_ $$uhttps://bib-pubdb1.desy.de/record/605543/files/document.pdf?subformat=pdfa$$xpdfa$$yPublished on 2024-01-08. Available in OpenAccess from 2024-07-08.
000605543 909CO $$ooai:bib-pubdb1.desy.de:605543$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019042$$aExternal Institute$$b0$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021535$$aExternal Institute$$b1$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015382$$aExternal Institute$$b2$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014098$$aExternal Institute$$b3$$kExtern
000605543 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1016653$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1016653$$aEuropean XFEL$$b4$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098592$$aExternal Institute$$b5$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080485$$aExternal Institute$$b6$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026549$$aExternal Institute$$b7$$kExtern
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1001646$$aEuropean XFEL$$b8$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009336$$aExternal Institute$$b9$$kExtern
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1009336$$aEuropean XFEL$$b9$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087596$$aExternal Institute$$b17$$kExtern
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028998$$aExternal Institute$$b18$$kExtern
000605543 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005340$$aDeutsches Elektronen-Synchrotron$$b19$$kDESY
000605543 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1005340$$aCentre for Free-Electron Laser Science$$b19$$kCFEL
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1005340$$aEuropean XFEL$$b19$$kXFEL.EU
000605543 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006959$$aDeutsches Elektronen-Synchrotron$$b24$$kDESY
000605543 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006959$$aCentre for Free-Electron Laser Science$$b24$$kCFEL
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006959$$aEuropean XFEL$$b24$$kXFEL.EU
000605543 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007496$$aDeutsches Elektronen-Synchrotron$$b26$$kDESY
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007496$$aEuropean XFEL$$b26$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015415$$aExternal Institute$$b28$$kExtern
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017893$$aEuropean XFEL$$b30$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014506$$aExternal Institute$$b34$$kExtern
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1011474$$aEuropean XFEL$$b36$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011474$$aExternal Institute$$b36$$kExtern
000605543 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017102$$aDeutsches Elektronen-Synchrotron$$b37$$kDESY
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017102$$aEuropean XFEL$$b37$$kXFEL.EU
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1005470$$aEuropean XFEL$$b38$$kXFEL.EU
000605543 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1005920$$aEuropean XFEL$$b39$$kXFEL.EU
000605543 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015299$$aExternal Institute$$b42$$kExtern
000605543 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000605543 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000605543 9141_ $$y2024
000605543 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000605543 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000605543 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000605543 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-27$$wger
000605543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT ASTRON : 2022$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000605543 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT ASTRON : 2022$$d2024-12-28
000605543 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000605543 9201_ $$0I:(DE-H253)FS-HIBEF-20240110$$kFS-HIBEF$$lFS-PS Fachgruppe HIBEF$$x1
000605543 9201_ $$0I:(DE-H253)XFEL_E1_HED-20210408$$kXFEL_E1_HED$$lHED$$x2
000605543 9201_ $$0I:(DE-H253)CFEL-DRD-20160910$$kCFEL-DRD$$lFS-DS$$x3
000605543 9201_ $$0I:(DE-H253)XFEL_DO_DD_DET-20210408$$kXFEL_DO_DD_DET$$lDetector Operations$$x4
000605543 980__ $$ajournal
000605543 980__ $$aVDB
000605543 980__ $$aUNRESTRICTED
000605543 980__ $$aI:(DE-H253)HAS-User-20120731
000605543 980__ $$aI:(DE-H253)FS-HIBEF-20240110
000605543 980__ $$aI:(DE-H253)XFEL_E1_HED-20210408
000605543 980__ $$aI:(DE-H253)CFEL-DRD-20160910
000605543 980__ $$aI:(DE-H253)XFEL_DO_DD_DET-20210408
000605543 9801_ $$aFullTexts
000605543 999C5 $$1M Bethkenhagen$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/aa8b14$$p67 -$$tAstrophys. J.$$uBethkenhagen, M. et al. Planetary ices and the linear mixing approximation. Astrophys. J. 848, 67 (2017).$$v848$$y2017
000605543 999C5 $$1L Scheibe$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/201936378$$pA70 -$$tAstron. Astrophys.$$uScheibe, L., Nettelmann, N. & Redmer, R. Thermal evolution of Uranus and Neptune—I. Adiabatic models. Astron. Astrophys. 632, A70 (2019).$$v632$$y2019
000605543 999C5 $$1D Qasim$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41550-020-1054-y$$p781 -$$tNat. Astron.$$uQasim, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 4, 781–785 (2020).$$v4$$y2020
000605543 999C5 $$1LR Benedetti$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.286.5437.100$$p100 -$$tScience$$uBenedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).$$v286$$y1999
000605543 999C5 $$1H Hirai$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pepi.2008.06.011$$p242 -$$tPhys. Earth Planet. Inter.$$uHirai, H., Konagai, K., Kawamura, T., Yamamoto, Y. & Yagi, T. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter. 174, 242–246 (2009).$$v174$$y2009
000605543 999C5 $$1D Kraus$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41550-017-0219-9$$p606 -$$tNat. Astron.$$uKraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).$$v1$$y2017
000605543 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-36841-1$$uCheng, B., Hamel, S. & Bethkenhagen, M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nat. Commun. 14, 1104 (2023).
000605543 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms3446$$uLobanov, S. S. et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2446 (2013).
000605543 999C5 $$1A Kolesnikov$$2Crossref$$9-- missing cx lookup --$$a10.1038/ngeo591$$p566 -$$tNat. Geosci.$$uKolesnikov, A., Kutcherov, V. G. & Goncharov, A. F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2, 566–570 (2009).$$v2$$y2009
000605543 999C5 $$1L Spanu$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1014804108$$p6843 -$$tProc. Natl Acad. Sci. USA$$uSpanu, L., Donadio, D., Hohl, D., Schwegler, E. & Galli, G. Stability of hydrocarbons at deep Earth pressures and temperatures. Proc. Natl Acad. Sci. USA 108, 6843–6846 (2011).$$v108$$y2011
000605543 999C5 $$1AS Naumova$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.9b01353$$p20497 -$$tJ. Phys. Chem. C$$uNaumova, A. S., Lepeshkin, S. V. & Oganov, A. R. Hydrocarbons under pressure: phase diagrams and surprising new compounds in the C–H system. J. Phys. Chem. C 123, 20497–20501 (2019).$$v123$$y2019
000605543 999C5 $$1M Ross$$2Crossref$$9-- missing cx lookup --$$a10.1038/292435a0$$p435 -$$tNature$$uRoss, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).$$v292$$y1981
000605543 999C5 $$1M Podolak$$2Crossref$$9-- missing cx lookup --$$a10.1088/2041-8205/759/2/L32$$pL32 -$$tAstrophys. J. Lett.$$uPodolak, M. & Helled, R. What do we really know about Uranus and Neptune? Astrophys. J. Lett. 759, L32 (2012).$$v759$$y2012
000605543 999C5 $$1AA Piette$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/abbfb1$$p154 -$$tAstrophys. J.$$uPiette, A. A. & Madhusudhan, N. On the temperature profiles and emission spectra of mini-Neptune atmospheres. Astrophys. J. 904, 154 (2020).$$v904$$y2020
000605543 999C5 $$1T Scheler$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.214106$$p214106 -$$tPhys. Rev. B$$uScheler, T. et al. Synthesis and properties of platinum hydride. Phys. Rev. B 83, 214106 (2011).$$v83$$y2011
000605543 999C5 $$1M Frost$$2Crossref$$9-- missing cx lookup --$$a10.1002/admi.202202081$$p2202081 -$$tAdv. Mater. Interfaces$$uFrost, M., McBride, E. E., Smith, D., Smith, J. S. & Glenzer, S. H. Pressure driven alkane dehydrogenation by palladium metal. Adv. Mater. Interfaces 10, 2202081 (2023).$$v10$$y2023
000605543 999C5 $$1A Zerr$$2Crossref$$9-- missing cx lookup --$$a10.1080/08957950600608931$$p23 -$$tHigh Press. Res.$$uZerr, A., Serghiou, G., Boehler, R. & Ross, M. Decomposition of alkanes at high pressures and temperatures. High Press. Res. 26, 23–32 (2006).$$v26$$y2006
000605543 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-04206-7$$uWatkins, E. et al. Diamond and methane formation from the chemical decomposition of polyethylene at high pressures and temperatures. Sci. Rep. 12, 631 (2022).
000605543 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-019-40782-5$$uHartley, N. et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa. Sci. Rep. 9, 4196 (2019).
000605543 999C5 $$1F Seiboth$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5031907$$p221907 -$$tAppl. Phys. Lett.$$uSeiboth, F. et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112, 221907 (2018).$$v112$$y2018
000605543 999C5 $$1A Zylstra$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-021-04281-w$$p542 -$$tNature$$uZylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022).$$v601$$y2022
000605543 999C5 $$1D Kraus$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5017908$$p056313 -$$tPhys. Plasmas$$uKraus, D. et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion. Phys. Plasmas 25, 056313 (2018).$$v25$$y2018
000605543 999C5 $$1F Nestola$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1919067117$$p25310 -$$tProc. Natl Acad. Sci. USA$$uNestola, F. et al. Impact shock origin of diamonds in ureilite meteorites. Proc. Natl Acad. Sci. USA 117, 25310–25318 (2020).$$v117$$y2020
000605543 999C5 $$1U Zastrau$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521007335$$p1393 -$$tJ. Synchrotron Radiat.$$uZastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).$$v28$$y2021
000605543 999C5 $$1H-P Liermann$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521002551$$p688 -$$tJ. Synchrotron Radiat.$$uLiermann, H.-P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Radiat. 28, 688–706 (2021).$$v28$$y2021
000605543 999C5 $$1J Meza-Galvez$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5141360$$p195902 -$$tJ. Appl. Phys.$$uMeza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard X-ray irradiation. J. Appl. Phys. 127, 195902 (2020).$$v127$$y2020
000605543 999C5 $$1OB Ball$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0142196$$p055901 -$$tJ. Appl. Phys.$$uBall, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and X-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023).$$v134$$y2023
000605543 999C5 $$1RS McWilliams$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1421801112$$p7925 -$$tProc. Natl Acad. Sci. USA$$uMcWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015).$$v112$$y2015
000605543 999C5 $$1RS McWilliams$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.255501$$p255501 -$$tPhys. Rev. Lett.$$uMcWilliams, R. S., Dalton, D. A., Mahmood, M. F. & Goncharov, A. F. Optical properties of fluid hydrogen at the transition to a conducting state. Phys. Rev. Lett. 116, 255501 (2016).$$v116$$y2016
000605543 999C5 $$1OL Anderson$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.342969$$p1534 -$$tJ. Appl. Phys.$$uAnderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989).$$v65$$y1989
000605543 999C5 $$1C-S Zha$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1539895$$p1255 -$$tRev. Sci. Instrum.$$uZha, C.-S. & Bassett, W. A. Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and raman scattering. Rev. Sci. Instrum. 74, 1255–1262 (2003).$$v74$$y2003
000605543 999C5 $$1G Weck$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.101.014106$$p014106 -$$tPhys. Rev. B$$uWeck, G. et al. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 101, 014106 (2020).$$v101$$y2020
000605543 999C5 $$1W Hubbard$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.275.5304.1279$$p1279 -$$tScience$$uHubbard, W. Neptune’s deep chemistry. Science 275, 1279–1280 (1997).$$v275$$y1997
000605543 999C5 $$1MD Knudson$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaa7471$$p1455 -$$tScience$$uKnudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015).$$v348$$y2015
000605543 999C5 $$1M Zaghoo$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1707918114$$p11873 -$$tProc. Natl Acad. Sci. USA$$uZaghoo, M. & Silvera, I. F. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. Proc. Natl Acad. Sci. USA 114, 11873–11877 (2017).$$v114$$y2017
000605543 999C5 $$1PM Celliers$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aat0970$$p677 -$$tScience$$uCelliers, P. M. et al. Insulator-metal transition in dense fluid deuterium. Science 361, 677–682 (2018).$$v361$$y2018
000605543 999C5 $$1S Jiang$$2Crossref$$9-- missing cx lookup --$$a10.1002/advs.201901668$$p1901668 -$$tAdv. Sci.$$uJiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020).$$v7$$y2020
000605543 999C5 $$1D Kraus$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.5.L022023$$pL022023 -$$tPhys. Rev. Res.$$uKraus, D. et al. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons. Phys. Rev. Res. 5, L022023 (2023).$$v5$$y2023
000605543 999C5 $$1AA Correa$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0510489103$$p1204 -$$tProc. Natl Acad. Sci. USA$$uCorrea, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).$$v103$$y2006
000605543 999C5 $$1M Millot$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1114-6$$p251 -$$tNature$$uMillot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).$$v569$$y2019
000605543 999C5 $$1G Weck$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.165701$$p165701 -$$tPhys. Rev. Lett.$$uWeck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).$$v128$$y2022
000605543 999C5 $$1VB Prakapenka$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-021-01351-8$$p1233 -$$tNat. Phys.$$uPrakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021).$$v17$$y2021
000605543 999C5 $$1S Stanley$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02376$$p151 -$$tNature$$uStanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004).$$v428$$y2004
000605543 999C5 $$1C Cavazzoni$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.283.5398.44$$p44 -$$tScience$$uCavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).$$v283$$y1999
000605543 999C5 $$1R Redmer$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.icarus.2010.08.008$$p798 -$$tIcarus$$uRedmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).$$v211$$y2011
000605543 999C5 $$1K Soderlund$$2Crossref$$9-- missing cx lookup --$$a10.1098/rsta.2019.0479$$p20190479 -$$tPhil. Trans. R. Soc. A$$uSoderlund, K. & Stanley, S. The underexplored frontier of ice giant dynamos. Phil. Trans. R. Soc. A 378, 20190479 (2020).$$v378$$y2020
000605543 999C5 $$1SM Hörst$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41550-018-0397-0$$p303 -$$tNat. Astron.$$uHörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).$$v2$$y2018
000605543 999C5 $$1A Dewaele$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104102$$p104102 -$$tPhys. Rev. B$$uDewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102 (2008).$$v78$$y2008
000605543 999C5 $$1M Frost$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/15/05/P05004$$pP05004 -$$tJ. Instrum.$$uFrost, M., Curry, C. & Glenzer, S. Laser cutting apparatus for high energy density and diamond anvil cell science. J. Instrum. 15, P05004 (2020).$$v15$$y2020
000605543 999C5 $$1H-P Liermann$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515005937$$p908 -$$tJ. Synchrotron Radiat.$$uLiermann, H.-P. et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA II. J. Synchrotron Radiat. 22, 908–924 (2015).$$v22$$y2015
000605543 999C5 $$1A Allahgholi$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/10/01/C01023$$pC01023 -$$tJ. Instrum.$$uAllahgholi, A. et al. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 10, C01023 (2015).$$v10$$y2015
000605543 999C5 $$1A Allahgholi$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577518016077$$p74 -$$tJ. Synchrotron Radiat.$$uAllahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019).$$v26$$y2019
000605543 999C5 $$1T Scheler$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3652863$$p214501 -$$tJ. Chem. Phys.$$uScheler, T., Degtyareva, O. & Gregoryanz, E. On the effects of high temperature and high pressure on the hydrogen solubility in rhenium. J. Chem. Phys. 135, 214501 (2011).$$v135$$y2011
000605543 999C5 $$1T Maltezopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577519003795$$p1045 -$$tJ. Synchrotron Radiat.$$uMaltezopoulos, T. et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 26, 1045–1051 (2019).$$v26$$y2019
000605543 999C5 $$1A Dewaele$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1148970$$p2421 -$$tRev. Sci. Instrum.$$uDewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond-anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).$$v69$$y1998
000605543 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s43246-021-00158-7$$uHusband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 61 (2021).
000605543 999C5 $$1Z He$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.abo0617$$peabo0617 -$$tSci. Adv.$$uHe, Z. et al. Diamond formation kinetics in shock-compressed C–H–O samples recorded by small-angle X-ray scattering and X-ray diffraction. Sci. Adv. 8, eabo0617 (2022).$$v8$$y2022
000605543 999C5 $$1X Wang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.185701$$p185701 -$$tPhys. Rev. Lett.$$uWang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).$$v95$$y2005
000605543 999C5 $$1N Nettelmann$$2Crossref$$9-- missing cx lookup --$$a10.3847/PSJ/ac390a$$p241 -$$tPlanet. Sci. J.$$uNettelmann, N. et al. Theory of figures to the seventh order and the interiors of Jupiter and Saturn. Planet. Sci. J. 2, 241 (2021).$$v2$$y2021