Home > Publications database > A Mott-Schottky analysis of mesoporous silicon in aqueous electrolyte solution by electrochemical impedance spectroscopy > print |
001 | 605489 | ||
005 | 20250715171206.0 | ||
024 | 7 | _ | |a 10.1016/j.electacta.2024.144038 |2 doi |
024 | 7 | _ | |a 0013-4686 |2 ISSN |
024 | 7 | _ | |a 1873-3859 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01466 |2 datacite_doi |
024 | 7 | _ | |a arXiv:2312.04252 |2 arXiv |
024 | 7 | _ | |a WOS:001203564000001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4392384907 |
037 | _ | _ | |a PUBDB-2024-01466 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
088 | _ | _ | |a arXiv:2312.04252 |2 arXiv |
100 | 1 | _ | |a Brinker, Manuel |0 P:(DE-H253)PIP1015737 |b 0 |
245 | _ | _ | |a A Mott-Schottky analysis of mesoporous silicon in aqueous electrolyte solution by electrochemical impedance spectroscopy |
260 | _ | _ | |a New York, NY [u.a.] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1713172489_2163595 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 5 pages, 3 figures |
520 | _ | _ | |a Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor.In recent years, it has been shown that filling the pores with aqueous electrolytes in addition opensa particularly wide field for modifying and achieving active control of these functionalities, e.g.,for electrochemo-mechanical actuation and tunable photonics, or for the design of on-chip superca-pacitors. However, a mechanistic understanding of these new features has been hampered by thelack of a detailed characterization of the electrochemical behavior of mesoporous silicon in aqueouselectrolytes. Here, the capacitive, potential-controlled charging of the electrical double layer in amesoporous silicon electrode (pore diameter 7 nm) imbibed with perchloric acid solution is studiedby electrochemical impedance spectroscopy. Thorough measurements with detailed explanationsof the observed phenomena lead to a comprehensive understanding of the capacitive properties ofporous silicon. An analysis based on the Mott-Schottky equation allows general conclusions to bedrawn about the state of the band structure within the pore walls. Essential parameters such as theflat band potential, the doping density and the width of the space charge region can be determined.A comparison with bulk silicon shows that the flat band potential in particular is significantly al-tered by the introduction of nanopores, as it shifts from 1.4 ± 0.1 V to 1.9 ± 0.2 V. Overall, thisstudy provides a unique insight into the electrochemical processes, especially the electrical doublelayer charging, of nanoporous semiconductor electrodes. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a EHAWEDRY - Energy harvesting via wetting/drying cycles with nanoporous electrodes (964524) |0 G:(EU-Grant)964524 |c 964524 |f H2020-FETOPEN-2018-2019-2020-01 |x 1 |
542 | _ | _ | |i 2024-04-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-03-04 |2 Crossref |u http://creativecommons.org/licenses/by-nc/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Huber, Patrick |0 P:(DE-H253)PIP1013897 |b 1 |e Corresponding author |u desy |
773 | 1 | 8 | |a 10.1016/j.electacta.2024.144038 |b Elsevier BV |d 2024-04-01 |p 144038 |3 journal-article |2 Crossref |t Electrochimica Acta |v 483 |y 2024 |x 0013-4686 |
773 | _ | _ | |a 10.1016/j.electacta.2024.144038 |g Vol. 483, p. 144038 - |0 PERI:(DE-600)1483548-4 |p 144038 |t Electrochimica acta |v 483 |y 2024 |x 0013-4686 |
787 | 0 | _ | |a Brinker, Manuel et.al. |d 2024 |i IsParent |0 PUBDB-2024-01068 |r arXiv:2312.04252 |t A Mott-Schottky Analysis of Mesoporous Silicon in Aqueous Electrolyte by Electrochemical Impedance Spectroscopy |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/605489/files/1-s2.0-S0013468624002810-main.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/605489/files/1-s2.0-S0013468624002810-main.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:605489 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1015737 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1015737 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1013897 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1013897 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-09 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELECTROCHIM ACTA : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-09 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELECTROCHIM ACTA : 2022 |d 2024-12-09 |
920 | 1 | _ | |0 I:(DE-H253)CIMMS-20211022 |k CIMMS |l CIMMS-RA Center for integr. Multiscale M |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CIMMS-20211022 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1126/science.278.5339.840 |9 -- missing cx lookup -- |1 Lin |p 840 - |2 Crossref |t Science |v 278 |y 1997 |
999 | C | 5 | |a 10.1021/acsanm.1c04569 |9 -- missing cx lookup -- |1 Vendamani |p 4550 - |2 Crossref |t ACS Appl. Nano Mater. |v 5 |y 2022 |
999 | C | 5 | |1 Sailor |y 1997 |2 Crossref |o Sailor 1997 |
999 | C | 5 | |a 10.1021/nn800592q |9 -- missing cx lookup -- |1 Wu |p 2401 - |2 Crossref |t ACS Nano |v 2 |y 2008 |
999 | C | 5 | |a 10.1038/s41563-022-01257-7 |9 -- missing cx lookup -- |1 Micera |p 614 - |2 Crossref |t Nature Mater. |v 21 |y 2022 |
999 | C | 5 | |a 10.1038/ncomms7208 |9 -- missing cx lookup -- |1 Tzur-Balter |p 1 - |2 Crossref |t Nature Commun. |v 6 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.100.064502 |9 -- missing cx lookup -- |1 Gruener |p 64502 - |2 Crossref |t Phys. Rev. Lett. |v 100 |y 2008 |
999 | C | 5 | |a 10.1103/PhysRevE.86.021701 |9 -- missing cx lookup -- |1 Calus |p 21701 - |2 Crossref |t Phys. Rev. E |v 86 |y 2012 |
999 | C | 5 | |a 10.1063/1.4923240 |9 -- missing cx lookup -- |1 Gor |p 1 - |2 Crossref |t Appl. Phys. Lett. |v 106 |y 2015 |
999 | C | 5 | |a 10.1038/srep40207 |9 -- missing cx lookup -- |1 Kondrashova |p 40207 - |2 Crossref |t Sci. Rep. |v 7 |y 2017 |
999 | C | 5 | |1 Huber |y 2015 |2 Crossref |o Huber 2015 |
999 | C | 5 | |a 10.1039/C6SM00733C |9 -- missing cx lookup -- |1 Vincent |p 6656 - |2 Crossref |t Soft Matter |v 12 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevLett.125.234502 |1 Cencha |9 -- missing cx lookup -- |2 Crossref |t Phys. Rev. Lett. |v 125 |y 2020 |
999 | C | 5 | |a 10.1063/5.0189633 |1 Dittrich |9 -- missing cx lookup -- |2 Crossref |t J. Chem. Phys. |v 160 |y 2024 |
999 | C | 5 | |a 10.1038/ncomms5293 |9 -- missing cx lookup -- |1 Zhao |p 4293 - |2 Crossref |t Nature Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.3762/bjnano.7.56 |9 -- missing cx lookup -- |1 Ganser |p 637 - |2 Crossref |t Beilstein J. Nanotechnol. |v 7 |y 2016 |
999 | C | 5 | |a 10.1088/1748-3190/11/6/060301 |1 Fratzl |9 -- missing cx lookup -- |2 Crossref |t Bioinspiration Biomim. |v 11 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevB.54.17919 |9 -- missing cx lookup -- |1 Dolino |p 17919 - |2 Crossref |t Phys. Rev. B |v 54 |y 1996 |
999 | C | 5 | |a 10.1209/0295-5075/109/56002 |9 -- missing cx lookup -- |1 Grosman |p 56002 - |2 Crossref |t Europhys. Lett. |v 109 |y 2015 |
999 | C | 5 | |a 10.1063/1.4975001 |1 Gor |9 -- missing cx lookup -- |2 Crossref |t Appl. Phys. Rev. |v 4 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevB.95.064106 |1 Rolley |9 -- missing cx lookup -- |2 Crossref |t Phys. Rev. B |v 95 |y 2017 |
999 | C | 5 | |1 Brinker |y 2022 |2 Crossref |o Brinker 2022 |
999 | C | 5 | |a 10.1126/sciadv.aba1483 |1 Brinker |9 -- missing cx lookup -- |2 Crossref |t Sci. Adv. |v 6 |y 2020 |
999 | C | 5 | |1 Brinker |y 2022 |2 Crossref |o Brinker 2022 |
999 | C | 5 | |a 10.1016/j.electacta.2013.08.123 |9 -- missing cx lookup -- |1 Jiang |p 393 - |2 Crossref |t Electrochim. Acta |v 115 |y 2014 |
999 | C | 5 | |a 10.1038/s41467-020-15217-9 |9 -- missing cx lookup -- |1 Jia |p 1 - |2 Crossref |t Nature Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1002/adfm.202301109 |1 Cheng |9 -- missing cx lookup -- |2 Crossref |t Adv. Funct. Mater. |v 33 |y 2023 |
999 | C | 5 | |1 Canham |y 2015 |2 Crossref |o Canham 2015 |
999 | C | 5 | |1 Lehmann |y 2002 |2 Crossref |o Lehmann 2002 |
999 | C | 5 | |1 Sailor |y 2011 |2 Crossref |o Sailor 2011 |
999 | C | 5 | |1 Zhang |y 2007 |2 Crossref |o Zhang 2007 |
999 | C | 5 | |a 10.1016/S0013-4686(02)00716-8 |9 -- missing cx lookup -- |1 Cheng |p 497 - |2 Crossref |t Electrochim. Acta |v 48 |y 2003 |
999 | C | 5 | |a 10.1149/1.2085795 |9 -- missing cx lookup -- |1 Ronga |p 1403 - |2 Crossref |t J. Electrochem. Soc. |v 138 |y 1991 |
999 | C | 5 | |a 10.1016/0013-4686(91)85133-R |9 -- missing cx lookup -- |1 Searson |p 499 - |2 Crossref |t Electrochim. Acta |v 36 |y 1991 |
999 | C | 5 | |a 10.1016/S0022-0728(97)00131-9 |9 -- missing cx lookup -- |1 Popkirov |p 47 - |2 Crossref |t J. Electroanal. Soc. |v 429 |y 1997 |
999 | C | 5 | |a 10.1023/A:1009619415893 |9 -- missing cx lookup -- |1 Parkhutik |p 97 - |2 Crossref |t J. Porous Mater. |v 7 |y 2000 |
999 | C | 5 | |a 10.1007/s00339-014-8416-1 |9 -- missing cx lookup -- |1 Husairi |p 2119 - |2 Crossref |t Appl. Phys. A |v 116 |y 2014 |
999 | C | 5 | |a 10.1007/s12633-019-0077-4 |9 -- missing cx lookup -- |1 Mogoda |p 2837 - |2 Crossref |t Silicon |v 11 |y 2019 |
999 | C | 5 | |a 10.1016/j.tsf.2014.01.044 |9 -- missing cx lookup -- |1 Mula |p 311 - |2 Crossref |t Thin Solid Films |v 556 |y 2014 |
999 | C | 5 | |a 10.1002/1521-396X(200011)182:1<37::AID-PSSA37>3.0.CO;2-X |9 -- missing cx lookup -- |1 Parkhutik |p 37 - |2 Crossref |t Phys. Status Solidi (a) |v 182 |y 2000 |
999 | C | 5 | |a 10.1149/1.2085432 |9 -- missing cx lookup -- |1 Bsiesy |p 3450 - |2 Crossref |t J. Electrochem. Soc. |v 138 |y 1991 |
999 | C | 5 | |a 10.1149/1.2751836 |9 -- missing cx lookup -- |1 Cherif |p G63 - |2 Crossref |t Electrochem. Solid-State Lett. |v 10 |y 2007 |
999 | C | 5 | |a 10.1021/acs.jpcc.8b05241 |9 -- missing cx lookup -- |1 Mei |p 24499 - |2 Crossref |t J. Phys. Chem. C |v 122 |y 2018 |
999 | C | 5 | |1 Sato |y 1998 |2 Crossref |o Sato 1998 |
999 | C | 5 | |a 10.1021/ed084p685 |9 -- missing cx lookup -- |1 Gelderman |p 685 - |2 Crossref |t J. Chem. Educ. |v 84 |y 2007 |
999 | C | 5 | |1 Grundmann |y 2010 |2 Crossref |o Grundmann 2010 |
999 | C | 5 | |a 10.1021/acs.jpcc.7b10582 |9 -- missing cx lookup -- |1 Mei |p 194 - |2 Crossref |t J. Phys. Chem. C |v 122 |y 2018 |
999 | C | 5 | |a 10.6028/jres.042.026 |9 -- missing cx lookup -- |1 Brickwedde |p 309 - |2 Crossref |t J. Res. Natl. Inst. Stand. Technol. |v 42 |y 1949 |
999 | C | 5 | |a 10.1149/1.2124074 |9 -- missing cx lookup -- |1 Chazalviel |p 963 - |2 Crossref |t J. Electrochem. Soc. |v 129 |y 1982 |
999 | C | 5 | |a 10.1016/S0022-0728(98)00189-2 |9 -- missing cx lookup -- |1 Ottow |p 29 - |2 Crossref |t J. Electroanal. Soc. |v 455 |y 1998 |
999 | C | 5 | |a 10.1021/acs.jpcc.0c05616 |9 -- missing cx lookup -- |1 Priyadarshani |p 19990 - |2 Crossref |t J. Phys. Chem. C |v 124 |y 2020 |
999 | C | 5 | |a 10.1016/j.ijhydene.2019.03.017 |9 -- missing cx lookup -- |1 Merazga |p 9994 - |2 Crossref |t Int. J. Hydrogen Energy |v 44 |y 2019 |
999 | C | 5 | |a 10.1021/nl500531r |9 -- missing cx lookup -- |1 Westover |p 3197 - |2 Crossref |t Nano Lett. |v 14 |y 2014 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|