001     605489
005     20250715171206.0
024 7 _ |a 10.1016/j.electacta.2024.144038
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-01466
|2 datacite_doi
024 7 _ |a arXiv:2312.04252
|2 arXiv
024 7 _ |a WOS:001203564000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4392384907
037 _ _ |a PUBDB-2024-01466
041 _ _ |a English
082 _ _ |a 540
088 _ _ |a arXiv:2312.04252
|2 arXiv
100 1 _ |a Brinker, Manuel
|0 P:(DE-H253)PIP1015737
|b 0
245 _ _ |a A Mott-Schottky analysis of mesoporous silicon in aqueous electrolyte solution by electrochemical impedance spectroscopy
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713172489_2163595
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 5 pages, 3 figures
520 _ _ |a Nanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor.In recent years, it has been shown that filling the pores with aqueous electrolytes in addition opensa particularly wide field for modifying and achieving active control of these functionalities, e.g.,for electrochemo-mechanical actuation and tunable photonics, or for the design of on-chip superca-pacitors. However, a mechanistic understanding of these new features has been hampered by thelack of a detailed characterization of the electrochemical behavior of mesoporous silicon in aqueouselectrolytes. Here, the capacitive, potential-controlled charging of the electrical double layer in amesoporous silicon electrode (pore diameter 7 nm) imbibed with perchloric acid solution is studiedby electrochemical impedance spectroscopy. Thorough measurements with detailed explanationsof the observed phenomena lead to a comprehensive understanding of the capacitive properties ofporous silicon. An analysis based on the Mott-Schottky equation allows general conclusions to bedrawn about the state of the band structure within the pore walls. Essential parameters such as theflat band potential, the doping density and the width of the space charge region can be determined.A comparison with bulk silicon shows that the flat band potential in particular is significantly al-tered by the introduction of nanopores, as it shifts from 1.4 ± 0.1 V to 1.9 ± 0.2 V. Overall, thisstudy provides a unique insight into the electrochemical processes, especially the electrical doublelayer charging, of nanoporous semiconductor electrodes.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a EHAWEDRY - Energy harvesting via wetting/drying cycles with nanoporous electrodes (964524)
|0 G:(EU-Grant)964524
|c 964524
|f H2020-FETOPEN-2018-2019-2020-01
|x 1
542 _ _ |i 2024-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-03-04
|2 Crossref
|u http://creativecommons.org/licenses/by-nc/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Huber, Patrick
|0 P:(DE-H253)PIP1013897
|b 1
|e Corresponding author
|u desy
773 1 8 |a 10.1016/j.electacta.2024.144038
|b Elsevier BV
|d 2024-04-01
|p 144038
|3 journal-article
|2 Crossref
|t Electrochimica Acta
|v 483
|y 2024
|x 0013-4686
773 _ _ |a 10.1016/j.electacta.2024.144038
|g Vol. 483, p. 144038 -
|0 PERI:(DE-600)1483548-4
|p 144038
|t Electrochimica acta
|v 483
|y 2024
|x 0013-4686
787 0 _ |a Brinker, Manuel et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-01068
|r arXiv:2312.04252
|t A Mott-Schottky Analysis of Mesoporous Silicon in Aqueous Electrolyte by Electrochemical Impedance Spectroscopy
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/605489/files/1-s2.0-S0013468624002810-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/605489/files/1-s2.0-S0013468624002810-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:605489
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1015737
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1015737
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1013897
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1013897
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2022
|d 2024-12-09
920 1 _ |0 I:(DE-H253)CIMMS-20211022
|k CIMMS
|l CIMMS-RA Center for integr. Multiscale M
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CIMMS-20211022
980 1 _ |a FullTexts
999 C 5 |a 10.1126/science.278.5339.840
|9 -- missing cx lookup --
|1 Lin
|p 840 -
|2 Crossref
|t Science
|v 278
|y 1997
999 C 5 |a 10.1021/acsanm.1c04569
|9 -- missing cx lookup --
|1 Vendamani
|p 4550 -
|2 Crossref
|t ACS Appl. Nano Mater.
|v 5
|y 2022
999 C 5 |1 Sailor
|y 1997
|2 Crossref
|o Sailor 1997
999 C 5 |a 10.1021/nn800592q
|9 -- missing cx lookup --
|1 Wu
|p 2401 -
|2 Crossref
|t ACS Nano
|v 2
|y 2008
999 C 5 |a 10.1038/s41563-022-01257-7
|9 -- missing cx lookup --
|1 Micera
|p 614 -
|2 Crossref
|t Nature Mater.
|v 21
|y 2022
999 C 5 |a 10.1038/ncomms7208
|9 -- missing cx lookup --
|1 Tzur-Balter
|p 1 -
|2 Crossref
|t Nature Commun.
|v 6
|y 2015
999 C 5 |a 10.1103/PhysRevLett.100.064502
|9 -- missing cx lookup --
|1 Gruener
|p 64502 -
|2 Crossref
|t Phys. Rev. Lett.
|v 100
|y 2008
999 C 5 |a 10.1103/PhysRevE.86.021701
|9 -- missing cx lookup --
|1 Calus
|p 21701 -
|2 Crossref
|t Phys. Rev. E
|v 86
|y 2012
999 C 5 |a 10.1063/1.4923240
|9 -- missing cx lookup --
|1 Gor
|p 1 -
|2 Crossref
|t Appl. Phys. Lett.
|v 106
|y 2015
999 C 5 |a 10.1038/srep40207
|9 -- missing cx lookup --
|1 Kondrashova
|p 40207 -
|2 Crossref
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |1 Huber
|y 2015
|2 Crossref
|o Huber 2015
999 C 5 |a 10.1039/C6SM00733C
|9 -- missing cx lookup --
|1 Vincent
|p 6656 -
|2 Crossref
|t Soft Matter
|v 12
|y 2016
999 C 5 |a 10.1103/PhysRevLett.125.234502
|1 Cencha
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. Lett.
|v 125
|y 2020
999 C 5 |a 10.1063/5.0189633
|1 Dittrich
|9 -- missing cx lookup --
|2 Crossref
|t J. Chem. Phys.
|v 160
|y 2024
999 C 5 |a 10.1038/ncomms5293
|9 -- missing cx lookup --
|1 Zhao
|p 4293 -
|2 Crossref
|t Nature Commun.
|v 5
|y 2014
999 C 5 |a 10.3762/bjnano.7.56
|9 -- missing cx lookup --
|1 Ganser
|p 637 -
|2 Crossref
|t Beilstein J. Nanotechnol.
|v 7
|y 2016
999 C 5 |a 10.1088/1748-3190/11/6/060301
|1 Fratzl
|9 -- missing cx lookup --
|2 Crossref
|t Bioinspiration Biomim.
|v 11
|y 2016
999 C 5 |a 10.1103/PhysRevB.54.17919
|9 -- missing cx lookup --
|1 Dolino
|p 17919 -
|2 Crossref
|t Phys. Rev. B
|v 54
|y 1996
999 C 5 |a 10.1209/0295-5075/109/56002
|9 -- missing cx lookup --
|1 Grosman
|p 56002 -
|2 Crossref
|t Europhys. Lett.
|v 109
|y 2015
999 C 5 |a 10.1063/1.4975001
|1 Gor
|9 -- missing cx lookup --
|2 Crossref
|t Appl. Phys. Rev.
|v 4
|y 2017
999 C 5 |a 10.1103/PhysRevB.95.064106
|1 Rolley
|9 -- missing cx lookup --
|2 Crossref
|t Phys. Rev. B
|v 95
|y 2017
999 C 5 |1 Brinker
|y 2022
|2 Crossref
|o Brinker 2022
999 C 5 |a 10.1126/sciadv.aba1483
|1 Brinker
|9 -- missing cx lookup --
|2 Crossref
|t Sci. Adv.
|v 6
|y 2020
999 C 5 |1 Brinker
|y 2022
|2 Crossref
|o Brinker 2022
999 C 5 |a 10.1016/j.electacta.2013.08.123
|9 -- missing cx lookup --
|1 Jiang
|p 393 -
|2 Crossref
|t Electrochim. Acta
|v 115
|y 2014
999 C 5 |a 10.1038/s41467-020-15217-9
|9 -- missing cx lookup --
|1 Jia
|p 1 -
|2 Crossref
|t Nature Commun.
|v 11
|y 2020
999 C 5 |a 10.1002/adfm.202301109
|1 Cheng
|9 -- missing cx lookup --
|2 Crossref
|t Adv. Funct. Mater.
|v 33
|y 2023
999 C 5 |1 Canham
|y 2015
|2 Crossref
|o Canham 2015
999 C 5 |1 Lehmann
|y 2002
|2 Crossref
|o Lehmann 2002
999 C 5 |1 Sailor
|y 2011
|2 Crossref
|o Sailor 2011
999 C 5 |1 Zhang
|y 2007
|2 Crossref
|o Zhang 2007
999 C 5 |a 10.1016/S0013-4686(02)00716-8
|9 -- missing cx lookup --
|1 Cheng
|p 497 -
|2 Crossref
|t Electrochim. Acta
|v 48
|y 2003
999 C 5 |a 10.1149/1.2085795
|9 -- missing cx lookup --
|1 Ronga
|p 1403 -
|2 Crossref
|t J. Electrochem. Soc.
|v 138
|y 1991
999 C 5 |a 10.1016/0013-4686(91)85133-R
|9 -- missing cx lookup --
|1 Searson
|p 499 -
|2 Crossref
|t Electrochim. Acta
|v 36
|y 1991
999 C 5 |a 10.1016/S0022-0728(97)00131-9
|9 -- missing cx lookup --
|1 Popkirov
|p 47 -
|2 Crossref
|t J. Electroanal. Soc.
|v 429
|y 1997
999 C 5 |a 10.1023/A:1009619415893
|9 -- missing cx lookup --
|1 Parkhutik
|p 97 -
|2 Crossref
|t J. Porous Mater.
|v 7
|y 2000
999 C 5 |a 10.1007/s00339-014-8416-1
|9 -- missing cx lookup --
|1 Husairi
|p 2119 -
|2 Crossref
|t Appl. Phys. A
|v 116
|y 2014
999 C 5 |a 10.1007/s12633-019-0077-4
|9 -- missing cx lookup --
|1 Mogoda
|p 2837 -
|2 Crossref
|t Silicon
|v 11
|y 2019
999 C 5 |a 10.1016/j.tsf.2014.01.044
|9 -- missing cx lookup --
|1 Mula
|p 311 -
|2 Crossref
|t Thin Solid Films
|v 556
|y 2014
999 C 5 |a 10.1002/1521-396X(200011)182:1<37::AID-PSSA37>3.0.CO;2-X
|9 -- missing cx lookup --
|1 Parkhutik
|p 37 -
|2 Crossref
|t Phys. Status Solidi (a)
|v 182
|y 2000
999 C 5 |a 10.1149/1.2085432
|9 -- missing cx lookup --
|1 Bsiesy
|p 3450 -
|2 Crossref
|t J. Electrochem. Soc.
|v 138
|y 1991
999 C 5 |a 10.1149/1.2751836
|9 -- missing cx lookup --
|1 Cherif
|p G63 -
|2 Crossref
|t Electrochem. Solid-State Lett.
|v 10
|y 2007
999 C 5 |a 10.1021/acs.jpcc.8b05241
|9 -- missing cx lookup --
|1 Mei
|p 24499 -
|2 Crossref
|t J. Phys. Chem. C
|v 122
|y 2018
999 C 5 |1 Sato
|y 1998
|2 Crossref
|o Sato 1998
999 C 5 |a 10.1021/ed084p685
|9 -- missing cx lookup --
|1 Gelderman
|p 685 -
|2 Crossref
|t J. Chem. Educ.
|v 84
|y 2007
999 C 5 |1 Grundmann
|y 2010
|2 Crossref
|o Grundmann 2010
999 C 5 |a 10.1021/acs.jpcc.7b10582
|9 -- missing cx lookup --
|1 Mei
|p 194 -
|2 Crossref
|t J. Phys. Chem. C
|v 122
|y 2018
999 C 5 |a 10.6028/jres.042.026
|9 -- missing cx lookup --
|1 Brickwedde
|p 309 -
|2 Crossref
|t J. Res. Natl. Inst. Stand. Technol.
|v 42
|y 1949
999 C 5 |a 10.1149/1.2124074
|9 -- missing cx lookup --
|1 Chazalviel
|p 963 -
|2 Crossref
|t J. Electrochem. Soc.
|v 129
|y 1982
999 C 5 |a 10.1016/S0022-0728(98)00189-2
|9 -- missing cx lookup --
|1 Ottow
|p 29 -
|2 Crossref
|t J. Electroanal. Soc.
|v 455
|y 1998
999 C 5 |a 10.1021/acs.jpcc.0c05616
|9 -- missing cx lookup --
|1 Priyadarshani
|p 19990 -
|2 Crossref
|t J. Phys. Chem. C
|v 124
|y 2020
999 C 5 |a 10.1016/j.ijhydene.2019.03.017
|9 -- missing cx lookup --
|1 Merazga
|p 9994 -
|2 Crossref
|t Int. J. Hydrogen Energy
|v 44
|y 2019
999 C 5 |a 10.1021/nl500531r
|9 -- missing cx lookup --
|1 Westover
|p 3197 -
|2 Crossref
|t Nano Lett.
|v 14
|y 2014


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21