Home > Publications database > Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane > print |
001 | 605377 | ||
005 | 20250715170707.0 | ||
024 | 7 | _ | |a 10.1038/s41557-023-01420-w |2 doi |
024 | 7 | _ | |a 1755-4330 |2 ISSN |
024 | 7 | _ | |a 1755-4349 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01444 |2 datacite_doi |
024 | 7 | _ | |a altmetric:159003226 |2 altmetric |
024 | 7 | _ | |a pmid:38307994 |2 pmid |
024 | 7 | _ | |a WOS:001156518100001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4391474863 |
037 | _ | _ | |a PUBDB-2024-01444 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Borne, Kurtis D. |0 P:(DE-H253)PIP1089399 |b 0 |
245 | _ | _ | |a Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane |
260 | _ | _ | |a London |c 2024 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715156798_3532560 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
542 | _ | _ | |i 2024-02-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-02-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
700 | 1 | _ | |a Cooper, Joseph C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a ashfold, michael |0 P:(DE-H253)PIP1095429 |b 2 |
700 | 1 | _ | |a Bachmann, Julien |0 0000-0001-6480-6212 |b 3 |
700 | 1 | _ | |a Bhattacharyya, Surjendu |0 P:(DE-H253)PIP1095450 |b 4 |
700 | 1 | _ | |a Boll, Rebecca |0 P:(DE-H253)PIP1014282 |b 5 |
700 | 1 | _ | |a Bonanomi, Matteo |0 P:(DE-H253)PIP1102077 |b 6 |
700 | 1 | _ | |a Bosch, Michael |0 0000-0003-0837-8780 |b 7 |
700 | 1 | _ | |a Callegari, Carlo |0 P:(DE-H253)PIP1085429 |b 8 |
700 | 1 | _ | |a Centurion, Martin |0 P:(DE-H253)PIP1089434 |b 9 |
700 | 1 | _ | |a Coreno, Marcello |0 P:(DE-H253)PIP1085139 |b 10 |
700 | 1 | _ | |a Curchod, Basile |0 P:(DE-H253)PIP1095435 |b 11 |
700 | 1 | _ | |a Danailov, Miltcho B. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Demidovich, Alexander |0 0000-0003-2355-2257 |b 13 |
700 | 1 | _ | |a Di Fraia, Michele |0 P:(DE-H253)PIP1110127 |b 14 |
700 | 1 | _ | |a Erk, Benjamin |0 P:(DE-H253)PIP1011809 |b 15 |
700 | 1 | _ | |a Facciala, Davide |0 P:(DE-H253)PIP1089922 |b 16 |
700 | 1 | _ | |a Feifel, Raimund |0 P:(DE-H253)PIP1009717 |b 17 |
700 | 1 | _ | |a Forbes, Ruaridh |0 P:(DE-H253)PIP1088346 |b 18 |
700 | 1 | _ | |a Hansen, Christopher |0 P:(DE-H253)PIP1022924 |b 19 |
700 | 1 | _ | |a Holland, David |0 P:(DE-H253)PIP1007674 |b 20 |
700 | 1 | _ | |a Ingle, Rebecca |0 P:(DE-H253)PIP1031944 |b 21 |
700 | 1 | _ | |a Lindh, Roland |0 0000-0001-7567-8295 |b 22 |
700 | 1 | _ | |a Ma, Lingyu |0 P:(DE-H253)PIP1096862 |b 23 |
700 | 1 | _ | |a McGhee, Henry G. |0 P:(DE-H253)PIP1104326 |b 24 |
700 | 1 | _ | |a Muvva, Sri Bhavya |0 0000-0002-1051-019X |b 25 |
700 | 1 | _ | |a Nunes, Joao Pedro Figueira |0 0000-0003-0670-6023 |b 26 |
700 | 1 | _ | |a Odate, Asami |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Pathak, Shashank |0 P:(DE-H253)PIP1081206 |b 28 |
700 | 1 | _ | |a Plekan, Oksana |0 P:(DE-H253)PIP1091812 |b 29 |
700 | 1 | _ | |a Prince, Kevin |0 P:(DE-H253)PIP1091774 |b 30 |
700 | 1 | _ | |a Rebernik, Primoz |0 P:(DE-HGF)0 |b 31 |
700 | 1 | _ | |a Rouzée, Arnaud |0 P:(DE-H253)PIP1008275 |b 32 |
700 | 1 | _ | |a Rudenko, Artem |0 P:(DE-H253)PIP1006803 |b 33 |
700 | 1 | _ | |a Simoncig, Alberto |0 P:(DE-H253)PIP1012302 |b 34 |
700 | 1 | _ | |a Squibb, Richard |0 P:(DE-H253)PIP1088196 |b 35 |
700 | 1 | _ | |a Venkatachalam, Anbu |0 P:(DE-H253)PIP1096868 |b 36 |
700 | 1 | _ | |a Vozzi, Caterina |0 P:(DE-H253)PIP1085073 |b 37 |
700 | 1 | _ | |a Weber, Peter M. |0 P:(DE-HGF)0 |b 38 |
700 | 1 | _ | |a Kirrander, Adam |0 P:(DE-HGF)0 |b 39 |e Corresponding author |
700 | 1 | _ | |a Rolles, Daniel |0 P:(DE-H253)PIP1007320 |b 40 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41557-023-01420-w |b Springer Science and Business Media LLC |d 2024-02-02 |n 4 |p 499-505 |3 journal-article |2 Crossref |t Nature Chemistry |v 16 |y 2024 |x 1755-4330 |
773 | _ | _ | |a 10.1038/s41557-023-01420-w |g Vol. 16, no. 4, p. 499 - 505 |0 PERI:(DE-600)2464596-5 |n 4 |p 499-505 |t Nature chemistry |v 16 |y 2024 |x 1755-4330 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:605377 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1089399 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1089399 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1095429 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1095429 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1095450 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1095450 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1014282 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1102077 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1102077 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1085429 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1085429 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1089434 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 9 |6 P:(DE-H253)PIP1089434 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1085139 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 10 |6 P:(DE-H253)PIP1085139 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1095435 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1095435 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1110127 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1011809 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 15 |6 P:(DE-H253)PIP1011809 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 16 |6 P:(DE-H253)PIP1089922 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 17 |6 P:(DE-H253)PIP1009717 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 18 |6 P:(DE-H253)PIP1088346 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1088346 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 19 |6 P:(DE-H253)PIP1022924 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 20 |6 P:(DE-H253)PIP1007674 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-H253)PIP1031944 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 23 |6 P:(DE-H253)PIP1096862 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 23 |6 P:(DE-H253)PIP1096862 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 24 |6 P:(DE-H253)PIP1104326 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 28 |6 P:(DE-H253)PIP1081206 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 28 |6 P:(DE-H253)PIP1081206 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 29 |6 P:(DE-H253)PIP1091812 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 29 |6 P:(DE-H253)PIP1091812 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 30 |6 P:(DE-H253)PIP1091774 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 30 |6 P:(DE-H253)PIP1091774 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 32 |6 P:(DE-H253)PIP1008275 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 32 |6 P:(DE-H253)PIP1008275 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 33 |6 P:(DE-H253)PIP1006803 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 34 |6 P:(DE-H253)PIP1012302 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 35 |6 P:(DE-H253)PIP1088196 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 36 |6 P:(DE-H253)PIP1096868 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 36 |6 P:(DE-H253)PIP1096868 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 37 |6 P:(DE-H253)PIP1085073 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 37 |6 P:(DE-H253)PIP1085073 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 40 |6 P:(DE-H253)PIP1007320 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-08-29 |w ger |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT CHEM : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b NAT CHEM : 2022 |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-H253)FS-FLASH-O-20160930 |k FS-FLASH-O |l FLASH Wissenschaftlicher Nutzerbetrieb |x 0 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_E2_SQS-20210408 |k XFEL_E2_SQS |l SQS |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-FLASH-O-20160930 |
980 | _ | _ | |a I:(DE-H253)XFEL_E2_SQS-20210408 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1002/9783527827626 |9 -- missing cx lookup -- |2 Crossref |u Pianowski, Z. L. Molecular Photoswitches: Chemistry, Properties, and Applications Vols 1 and 2 (Wiley, 2022). |
999 | C | 5 | |a 10.1021/acscatal.2c03043 |9 -- missing cx lookup -- |1 E Franz |p 13418 - |2 Crossref |u Franz, E. et al. Tunable energy release in a reversible molecular solar thermal system. ACS Catal. 12, 13418–13425 (2022). |t ACS Catal. |v 12 |y 2022 |
999 | C | 5 | |a 10.1039/D1CS00890K |9 -- missing cx lookup -- |1 Z Wang |p 7313 - |2 Crossref |u Wang, Z., Hölzel, H. & Moth-Poulsen, K. Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 51, 7313–7326 (2022). |t Chem. Soc. Rev. |v 51 |y 2022 |
999 | C | 5 | |a 10.1002/jcc.23270 |9 -- missing cx lookup -- |1 I Antol |p 1439 - |2 Crossref |u Antol, I. Photodeactivation paths in norbornadiene. J. Comput. Chem. 34, 1439–1445 (2013). |t J. Comput. Chem. |v 34 |y 2013 |
999 | C | 5 | |a 10.1039/C7TA04259K |9 -- missing cx lookup -- |1 K Jorner |p 12369 - |2 Crossref |u Jorner, K. et al. Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. J. Mater. Chem. A 5, 12369–12378 (2017). |t J. Mater. Chem. A |v 5 |y 2017 |
999 | C | 5 | |a 10.1002/aenm.201703401 |9 -- missing cx lookup -- |1 A Dreos |p 1703401 - |2 Crossref |u Dreos, A. et al. Liquid norbornadiene photoswitches for solar energy storage. Adv. Energy Mater. 8, 1703401 (2018). |t Adv. Energy Mater. |v 8 |y 2018 |
999 | C | 5 | |a 10.1021/acs.accounts.0c00235 |9 -- missing cx lookup -- |1 J Orrego-Hernández |p 1478 - |2 Crossref |u Orrego-Hernández, J., Dreos, A. & Moth-Poulsen, K. Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53, 1478–1487 (2020). |t Acc. Chem. Res. |v 53 |y 2020 |
999 | C | 5 | |a 10.1021/jacs.1c04322 |9 -- missing cx lookup -- |1 W Alex |p 153 - |2 Crossref |u Alex, W. et al. Solar energy storage: competition between delocalized charge transfer and localized excited states in the norbornadiene to quadricyclane photoisomerization. J. Am. Chem. Soc. 144, 153–162 (2022). |t J. Am. Chem. Soc. |v 144 |y 2022 |
999 | C | 5 | |a 10.1002/cptc.202200214 |9 -- missing cx lookup -- |1 F Coppola |p e202200214 - |2 Crossref |u Coppola, F., Nucci, M., Marazzi, M., Rocca, D. & Pastore, M. Norbornadiene/quadricyclane system in the spotlight: the role of Rydberg states and dynamic electronic correlation in a solar-thermal building block. ChemPhotoChem 7, e202200214 (2023). |t ChemPhotoChem |v 7 |y 2023 |
999 | C | 5 | |a 10.1063/1.1674547 |9 -- missing cx lookup -- |1 JWF Van Ingen |p 3665 - |2 Crossref |u Van Ingen, J. W. F., Van Tieghem, C. H. C. & Cramer, W. A. Radiation-induced isomerization of [2,2,1] bicycloheptadiene (norbornadiene) to [2,2,1,02,6,03,5] quadricycloheptane (quadricyclene) in cyclohexane solutions. J. Chem. Phys. 53, 3665–3674 (1970). |t J. Chem. Phys. |v 53 |y 1970 |
999 | C | 5 | |a 10.1039/C39800000681 |9 -- missing cx lookup -- |1 G Jones |p 681 - |2 Crossref |u Jones, G., Chiang, S.-H., Becker, W. G. & Greenberg, D. P. Structure-reactivity factors for exciplex isomerization of quadricyclene and related compounds. J. Chem. Soc., Chem. Commun. 15, 681–683 (1980). |t J. Chem. Soc., Chem. Commun. |v 15 |y 1980 |
999 | C | 5 | |a 10.1021/j100212a001 |9 -- missing cx lookup -- |1 G Jones |p 2805 - |2 Crossref |u Jones, G., Chiang, S. H., Becker, W. G. & Welch, J. A. Photosensitization of quadricyclene isomerization by electron acceptors. A short-circuit nonradiative decay mechanism for electron donor-acceptor quenching in polar media. J. Phys. Chem. 86, 2805–2808 (1982). |t J. Phys. Chem. |v 86 |y 1982 |
999 | C | 5 | |a 10.1021/acs.jpca.2c00950 |9 -- missing cx lookup -- |1 AE Hillers-Bendtsen |p 2670 - |2 Crossref |u Hillers-Bendtsen, A. E., Iuel Lunøe Dünweber, P. G., Olsen, L. H. & Mikkelsen, K. V. Prospects of improving molecular solar energy storage of the norbornadiene/quadricyclane system through bridgehead modifications. J. Phys. Chem. A 126, 2670–2676 (2022). |t J. Phys. Chem. A |v 126 |y 2022 |
999 | C | 5 | |a 10.1021/ar50037a001 |9 -- missing cx lookup -- |1 R Hoffmann |p 1 - |2 Crossref |u Hoffmann, R. Interaction of orbitals through space and through bonds. Acc. Chem. Res. 4, 1–9 (1971). |t Acc. Chem. Res. |v 4 |y 1971 |
999 | C | 5 | |a 10.1039/b107442c |9 -- missing cx lookup -- |2 Crossref |u Fuß, W., Kuttan Pushpa, K., Schmid, W. E. & Trushin, S. A. Ultrafast [2 + 2]-cycloaddition in norbornadiene. Photochem. Photobiol. Sci. 1, 60–66 (2002). |
999 | C | 5 | |a 10.1063/1.3697472 |9 -- missing cx lookup -- |1 F Rudakov |p 134303 - |2 Crossref |u Rudakov, F. & Weber, P. M. Ultrafast structural and isomerization dynamics in the Rydberg-exited quadricyclane:norbornadiene system. J. Chem. Phys. 136, 134303 (2012). |t J. Chem. Phys. |v 136 |y 2012 |
999 | C | 5 | |a 10.1063/5.0031387 |9 -- missing cx lookup -- |1 MH Palmer |p 204303 - |2 Crossref |u Palmer, M. H. et al. High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations. J. Chem. Phys. 153, 204303 (2020). |t J. Chem. Phys. |v 153 |y 2020 |
999 | C | 5 | |a 10.1039/D0CP03435E |9 -- missing cx lookup -- |1 A Valentini |p 22302 - |2 Crossref |u Valentini, A., van den Wildenberg, S. & Remacle, F. Selective bond formation triggered by short optical pulses: quantum dynamics of a four-center ring closure. Phys. Chem. Chem. Phys. 22, 22302–22313 (2020). |t Phys. Chem. Chem. Phys. |v 22 |y 2020 |
999 | C | 5 | |a 10.1021/acs.joc.2c02758 |9 -- missing cx lookup -- |2 Crossref |u Hernández, F. J., Cox, J. M., Li, J., Crespo-Otero, R. & Lopez, S. A. Multiconfigurational calculations and photodynamics describe norbornadiene photochemistry. J. Org. Chem. 88, 5311–5320 (2023). |
999 | C | 5 | |a 10.1021/jz502487r |9 -- missing cx lookup -- |1 S Adachi |p 343 - |2 Crossref |u Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015). |t J. Phys. Chem. Lett. |v 6 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-018-05292-4 |1 A von Conta |9 -- missing cx lookup -- |2 Crossref |u von Conta, A. et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9, 3162 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevLett.120.183003 |9 -- missing cx lookup -- |1 AD Smith |p 183003 - |2 Crossref |u Smith, A. D. et al. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 120, 183003 (2018). |t Phys. Rev. Lett. |v 120 |y 2018 |
999 | C | 5 | |a 10.1038/s41467-017-02478-0 |1 RJ Squibb |9 -- missing cx lookup -- |2 Crossref |u Squibb, R. J. et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1038/s41557-020-0507-3 |9 -- missing cx lookup -- |1 S Pathak |p 795 - |2 Crossref |u Pathak, S. et al. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat. Chem. 12, 795–800 (2020). |t Nat. Chem. |v 12 |y 2020 |
999 | C | 5 | |a 10.1063/5.0151758 |9 -- missing cx lookup -- |1 MH Palmer |p 234303 - |2 Crossref |u Palmer, M. H. et al. High-level studies of the singlet states of quadricyclane, including analysis of a new experimental vacuum ultraviolet absorption spectrum by configuration interaction and density functional calculations. J. Chem. Phys. 158, 234303 (2023). |t J. Chem. Phys. |v 158 |y 2023 |
999 | C | 5 | |a 10.1063/5.0187707 |9 -- missing cx lookup -- |2 Crossref |u Cooper, J. C. et al. Valence-shell electronically excited states of norbornadiene and quadricyclane, J. Chem. Phys., https://doi.org/10.1063/5.0187707 (2024). |
999 | C | 5 | |a 10.1016/j.theochem.2004.09.040 |9 -- missing cx lookup -- |1 JO Jensen |p 1 - |2 Crossref |u Jensen, J. O. Vibrational frequencies and structural determination of cyanogen isocyanate. J. Mol. Struct. THEOCHEM 715, 1–5 (2005). |t J. Mol. Struct. THEOCHEM |v 715 |y 2005 |
999 | C | 5 | |a 10.1016/0924-2031(96)00008-2 |9 -- missing cx lookup -- |1 X Zhou |p 65 - |2 Crossref |u Zhou, X. & Liu, R. Density functional theory study of vibrational spectra. 3. Assignment of fundamental vibrational modes of quadricyclane. Vib. Spectrosc. 12, 65–71 (1996). |t Vib. Spectrosc. |v 12 |y 1996 |
999 | C | 5 | |a 10.1021/acs.jpclett.0c01198 |9 -- missing cx lookup -- |1 U Jacovella |p 6045 - |2 Crossref |u Jacovella, U. et al. Photo- and collision-induced isomerization of a charge-tagged norbornadiene–quadricyclane system. J. Phys. Chem. Lett. 11, 6045–6050 (2020). |t J. Phys. Chem. Lett. |v 11 |y 2020 |
999 | C | 5 | |a 10.1016/B978-0-12-589901-7.50007-0 |9 -- missing cx lookup -- |2 Crossref |u Robin, M. B. Higher Excited States of Polyatomic Molecules Vol. 1 (Academic Press, 1974). |
999 | C | 5 | |a 10.1016/B978-0-12-589903-1.50026-6 |9 -- missing cx lookup -- |2 Crossref |u Robin, M. B. Higher Excited States of Polyatomic Molecules Vol. 3 (Academic Press, 1985). |
999 | C | 5 | |a 10.1021/acs.jpclett.1c02612 |9 -- missing cx lookup -- |2 Crossref |u Forbes, R. et al. Vacuum ultraviolet excited state dynamics of the smallest ketone: acetone. J. Phys. Chem. Lett. 12, 8541–8547 (2021). |
999 | C | 5 | |a 10.1021/acs.jpcb.0c03344 |9 -- missing cx lookup -- |1 H Weir |p 5476 - |2 Crossref |u Weir, H., Williams, M., Parrish, R. M., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J. Phys. Chem. B 124, 5476–5487 (2020). |t J. Phys. Chem. B |v 124 |y 2020 |
999 | C | 5 | |a 10.1039/C4CP02310B |9 -- missing cx lookup -- |1 A Lietard |p 22262 - |2 Crossref |u Lietard, A. et al. Competitive direct vs. indirect photochromism dynamics of constrained inverse dithienylethene molecules. Phys. Chem. Chem. Phys. 16, 22262–22272 (2014). |t Phys. Chem. Chem. Phys. |v 16 |y 2014 |
999 | C | 5 | |a 10.1103/PhysRevLett.114.255501 |9 -- missing cx lookup -- |1 MP Minitti |p 255501 - |2 Crossref |u Minitti, M. P. et al. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015). |t Phys. Rev. Lett. |v 114 |y 2015 |
999 | C | 5 | |a 10.1038/s41557-019-0291-0 |9 -- missing cx lookup -- |1 B Stankus |p 716 - |2 Crossref |u Stankus, B. et al. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11, 716–721 (2019). |t Nat. Chem. |v 11 |y 2019 |
999 | C | 5 | |a 10.1038/s41557-019-0252-7 |9 -- missing cx lookup -- |1 TJA Wolf |p 504 - |2 Crossref |u Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019). |t Nat. Chem. |v 11 |y 2019 |
999 | C | 5 | |a 10.1126/science.abb2235 |9 -- missing cx lookup -- |1 J Yang |p 885 - |2 Crossref |u Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020). |t Science |v 368 |y 2020 |
999 | C | 5 | |a 10.1038/nphoton.2012.233 |9 -- missing cx lookup -- |1 E Allaria |p 699 - |2 Crossref |u Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012). |t Nat. Photon. |v 6 |y 2012 |
999 | C | 5 | |a 10.1088/0953-4075/46/16/164007 |9 -- missing cx lookup -- |1 V Lyamayev |p 164007 - |2 Crossref |u Lyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra. J. Phys. B At. Mol. Opt. Phys. 46, 164007 (2013). |t J. Phys. B At. Mol. Opt. Phys. |v 46 |y 2013 |
999 | C | 5 | |a 10.1107/S1600577515005743 |9 -- missing cx lookup -- |1 C Svetina |p 538 - |2 Crossref |u Svetina, C. et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synchrotron Rad. 22, 538–543 (2015). |t J. Synchrotron Rad. |v 22 |y 2015 |
999 | C | 5 | |a 10.1063/5.0030944 |9 -- missing cx lookup -- |1 S Battaglia |p 034102 - |2 Crossref |u Battaglia, S. & Lindh, R. On the role of symmetry in XDW-CASPT2. J. Chem. Phys. 154, 034102 (2021). |t J. Chem. Phys. |v 154 |y 2021 |
999 | C | 5 | |a 10.1063/5.0004835 |9 -- missing cx lookup -- |1 F Aquilante |p 214117 - |2 Crossref |u Aquilante, F. et al. Modern quantum chemistry with [Open]Molcas. J. Chem. Phys. 152, 214117 (2020). |t J. Chem. Phys. |v 152 |y 2020 |
999 | C | 5 | |a 10.1021/acs.jctc.2c00301 |9 -- missing cx lookup -- |1 Y Nishimoto |p 4269 - |2 Crossref |u Nishimoto, Y., Battaglia, S. & Lindh, R. Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods. J. Chem. Theory Comput. 18, 4269–4281 (2022). |t J. Chem. Theory Comput. |v 18 |y 2022 |
999 | C | 5 | |a 10.1002/wcms.1370 |9 -- missing cx lookup -- |2 Crossref |u Mai, S., Marquetand, P. & González, L. Nonadiabatic dynamics: the SHARC approach. WIREs Comput. Mol. Sci. 8, e1370 (2018). |
999 | C | 5 | |a 10.1002/qua.25049 |9 -- missing cx lookup -- |1 M Barbatti |p 762 - |2 Crossref |u Barbatti, M. & Sen, K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 116, 762–771 (2016). |t Int. J. Quantum Chem. |v 116 |y 2016 |
999 | C | 5 | |a 10.1038/srep35522 |1 M Ruckenbauer |9 -- missing cx lookup -- |2 Crossref |u Ruckenbauer, M., Mai, S., Marquetand, P. & González, L. Revealing deactivation pathways hidden in time-resolved photoelectron spectra. Sci. Rep. 6, 35522 (2016). |t Sci. Rep. |v 6 |y 2016 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|