001     605377
005     20250715170707.0
024 7 _ |a 10.1038/s41557-023-01420-w
|2 doi
024 7 _ |a 1755-4330
|2 ISSN
024 7 _ |a 1755-4349
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-01444
|2 datacite_doi
024 7 _ |a altmetric:159003226
|2 altmetric
024 7 _ |a pmid:38307994
|2 pmid
024 7 _ |a WOS:001156518100001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4391474863
037 _ _ |a PUBDB-2024-01444
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Borne, Kurtis D.
|0 P:(DE-H253)PIP1089399
|b 0
245 _ _ |a Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
260 _ _ |a London
|c 2024
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715156798_3532560
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
542 _ _ |i 2024-02-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-02-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Cooper, Joseph C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a ashfold, michael
|0 P:(DE-H253)PIP1095429
|b 2
700 1 _ |a Bachmann, Julien
|0 0000-0001-6480-6212
|b 3
700 1 _ |a Bhattacharyya, Surjendu
|0 P:(DE-H253)PIP1095450
|b 4
700 1 _ |a Boll, Rebecca
|0 P:(DE-H253)PIP1014282
|b 5
700 1 _ |a Bonanomi, Matteo
|0 P:(DE-H253)PIP1102077
|b 6
700 1 _ |a Bosch, Michael
|0 0000-0003-0837-8780
|b 7
700 1 _ |a Callegari, Carlo
|0 P:(DE-H253)PIP1085429
|b 8
700 1 _ |a Centurion, Martin
|0 P:(DE-H253)PIP1089434
|b 9
700 1 _ |a Coreno, Marcello
|0 P:(DE-H253)PIP1085139
|b 10
700 1 _ |a Curchod, Basile
|0 P:(DE-H253)PIP1095435
|b 11
700 1 _ |a Danailov, Miltcho B.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Demidovich, Alexander
|0 0000-0003-2355-2257
|b 13
700 1 _ |a Di Fraia, Michele
|0 P:(DE-H253)PIP1110127
|b 14
700 1 _ |a Erk, Benjamin
|0 P:(DE-H253)PIP1011809
|b 15
700 1 _ |a Facciala, Davide
|0 P:(DE-H253)PIP1089922
|b 16
700 1 _ |a Feifel, Raimund
|0 P:(DE-H253)PIP1009717
|b 17
700 1 _ |a Forbes, Ruaridh
|0 P:(DE-H253)PIP1088346
|b 18
700 1 _ |a Hansen, Christopher
|0 P:(DE-H253)PIP1022924
|b 19
700 1 _ |a Holland, David
|0 P:(DE-H253)PIP1007674
|b 20
700 1 _ |a Ingle, Rebecca
|0 P:(DE-H253)PIP1031944
|b 21
700 1 _ |a Lindh, Roland
|0 0000-0001-7567-8295
|b 22
700 1 _ |a Ma, Lingyu
|0 P:(DE-H253)PIP1096862
|b 23
700 1 _ |a McGhee, Henry G.
|0 P:(DE-H253)PIP1104326
|b 24
700 1 _ |a Muvva, Sri Bhavya
|0 0000-0002-1051-019X
|b 25
700 1 _ |a Nunes, Joao Pedro Figueira
|0 0000-0003-0670-6023
|b 26
700 1 _ |a Odate, Asami
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Pathak, Shashank
|0 P:(DE-H253)PIP1081206
|b 28
700 1 _ |a Plekan, Oksana
|0 P:(DE-H253)PIP1091812
|b 29
700 1 _ |a Prince, Kevin
|0 P:(DE-H253)PIP1091774
|b 30
700 1 _ |a Rebernik, Primoz
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Rouzée, Arnaud
|0 P:(DE-H253)PIP1008275
|b 32
700 1 _ |a Rudenko, Artem
|0 P:(DE-H253)PIP1006803
|b 33
700 1 _ |a Simoncig, Alberto
|0 P:(DE-H253)PIP1012302
|b 34
700 1 _ |a Squibb, Richard
|0 P:(DE-H253)PIP1088196
|b 35
700 1 _ |a Venkatachalam, Anbu
|0 P:(DE-H253)PIP1096868
|b 36
700 1 _ |a Vozzi, Caterina
|0 P:(DE-H253)PIP1085073
|b 37
700 1 _ |a Weber, Peter M.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Kirrander, Adam
|0 P:(DE-HGF)0
|b 39
|e Corresponding author
700 1 _ |a Rolles, Daniel
|0 P:(DE-H253)PIP1007320
|b 40
|e Corresponding author
773 1 8 |a 10.1038/s41557-023-01420-w
|b Springer Science and Business Media LLC
|d 2024-02-02
|n 4
|p 499-505
|3 journal-article
|2 Crossref
|t Nature Chemistry
|v 16
|y 2024
|x 1755-4330
773 _ _ |a 10.1038/s41557-023-01420-w
|g Vol. 16, no. 4, p. 499 - 505
|0 PERI:(DE-600)2464596-5
|n 4
|p 499-505
|t Nature chemistry
|v 16
|y 2024
|x 1755-4330
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:605377
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1089399
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1089399
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1095429
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1095429
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1095450
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1095450
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1014282
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1102077
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1102077
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1085429
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1085429
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1089434
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1089434
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1085139
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1085139
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1095435
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1095435
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1110127
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1011809
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1011809
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1089922
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1009717
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 18
|6 P:(DE-H253)PIP1088346
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1088346
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1022924
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1007674
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1031944
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 23
|6 P:(DE-H253)PIP1096862
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-H253)PIP1096862
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-H253)PIP1104326
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 28
|6 P:(DE-H253)PIP1081206
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 28
|6 P:(DE-H253)PIP1081206
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 29
|6 P:(DE-H253)PIP1091812
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 29
|6 P:(DE-H253)PIP1091812
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 30
|6 P:(DE-H253)PIP1091774
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 30
|6 P:(DE-H253)PIP1091774
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 32
|6 P:(DE-H253)PIP1008275
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 32
|6 P:(DE-H253)PIP1008275
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 P:(DE-H253)PIP1006803
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 34
|6 P:(DE-H253)PIP1012302
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 35
|6 P:(DE-H253)PIP1088196
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 36
|6 P:(DE-H253)PIP1096868
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 36
|6 P:(DE-H253)PIP1096868
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 37
|6 P:(DE-H253)PIP1085073
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 37
|6 P:(DE-H253)PIP1085073
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 40
|6 P:(DE-H253)PIP1007320
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-29
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CHEM : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT CHEM : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-H253)FS-FLASH-O-20160930
|k FS-FLASH-O
|l FLASH Wissenschaftlicher Nutzerbetrieb
|x 0
920 1 _ |0 I:(DE-H253)XFEL_E2_SQS-20210408
|k XFEL_E2_SQS
|l SQS
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-FLASH-O-20160930
980 _ _ |a I:(DE-H253)XFEL_E2_SQS-20210408
980 1 _ |a FullTexts
999 C 5 |a 10.1002/9783527827626
|9 -- missing cx lookup --
|2 Crossref
|u Pianowski, Z. L. Molecular Photoswitches: Chemistry, Properties, and Applications Vols 1 and 2 (Wiley, 2022).
999 C 5 |a 10.1021/acscatal.2c03043
|9 -- missing cx lookup --
|1 E Franz
|p 13418 -
|2 Crossref
|u Franz, E. et al. Tunable energy release in a reversible molecular solar thermal system. ACS Catal. 12, 13418–13425 (2022).
|t ACS Catal.
|v 12
|y 2022
999 C 5 |a 10.1039/D1CS00890K
|9 -- missing cx lookup --
|1 Z Wang
|p 7313 -
|2 Crossref
|u Wang, Z., Hölzel, H. & Moth-Poulsen, K. Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 51, 7313–7326 (2022).
|t Chem. Soc. Rev.
|v 51
|y 2022
999 C 5 |a 10.1002/jcc.23270
|9 -- missing cx lookup --
|1 I Antol
|p 1439 -
|2 Crossref
|u Antol, I. Photodeactivation paths in norbornadiene. J. Comput. Chem. 34, 1439–1445 (2013).
|t J. Comput. Chem.
|v 34
|y 2013
999 C 5 |a 10.1039/C7TA04259K
|9 -- missing cx lookup --
|1 K Jorner
|p 12369 -
|2 Crossref
|u Jorner, K. et al. Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. J. Mater. Chem. A 5, 12369–12378 (2017).
|t J. Mater. Chem. A
|v 5
|y 2017
999 C 5 |a 10.1002/aenm.201703401
|9 -- missing cx lookup --
|1 A Dreos
|p 1703401 -
|2 Crossref
|u Dreos, A. et al. Liquid norbornadiene photoswitches for solar energy storage. Adv. Energy Mater. 8, 1703401 (2018).
|t Adv. Energy Mater.
|v 8
|y 2018
999 C 5 |a 10.1021/acs.accounts.0c00235
|9 -- missing cx lookup --
|1 J Orrego-Hernández
|p 1478 -
|2 Crossref
|u Orrego-Hernández, J., Dreos, A. & Moth-Poulsen, K. Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53, 1478–1487 (2020).
|t Acc. Chem. Res.
|v 53
|y 2020
999 C 5 |a 10.1021/jacs.1c04322
|9 -- missing cx lookup --
|1 W Alex
|p 153 -
|2 Crossref
|u Alex, W. et al. Solar energy storage: competition between delocalized charge transfer and localized excited states in the norbornadiene to quadricyclane photoisomerization. J. Am. Chem. Soc. 144, 153–162 (2022).
|t J. Am. Chem. Soc.
|v 144
|y 2022
999 C 5 |a 10.1002/cptc.202200214
|9 -- missing cx lookup --
|1 F Coppola
|p e202200214 -
|2 Crossref
|u Coppola, F., Nucci, M., Marazzi, M., Rocca, D. & Pastore, M. Norbornadiene/quadricyclane system in the spotlight: the role of Rydberg states and dynamic electronic correlation in a solar-thermal building block. ChemPhotoChem 7, e202200214 (2023).
|t ChemPhotoChem
|v 7
|y 2023
999 C 5 |a 10.1063/1.1674547
|9 -- missing cx lookup --
|1 JWF Van Ingen
|p 3665 -
|2 Crossref
|u Van Ingen, J. W. F., Van Tieghem, C. H. C. & Cramer, W. A. Radiation-induced isomerization of [2,2,1] bicycloheptadiene (norbornadiene) to [2,2,1,02,6,03,5] quadricycloheptane (quadricyclene) in cyclohexane solutions. J. Chem. Phys. 53, 3665–3674 (1970).
|t J. Chem. Phys.
|v 53
|y 1970
999 C 5 |a 10.1039/C39800000681
|9 -- missing cx lookup --
|1 G Jones
|p 681 -
|2 Crossref
|u Jones, G., Chiang, S.-H., Becker, W. G. & Greenberg, D. P. Structure-reactivity factors for exciplex isomerization of quadricyclene and related compounds. J. Chem. Soc., Chem. Commun. 15, 681–683 (1980).
|t J. Chem. Soc., Chem. Commun.
|v 15
|y 1980
999 C 5 |a 10.1021/j100212a001
|9 -- missing cx lookup --
|1 G Jones
|p 2805 -
|2 Crossref
|u Jones, G., Chiang, S. H., Becker, W. G. & Welch, J. A. Photosensitization of quadricyclene isomerization by electron acceptors. A short-circuit nonradiative decay mechanism for electron donor-acceptor quenching in polar media. J. Phys. Chem. 86, 2805–2808 (1982).
|t J. Phys. Chem.
|v 86
|y 1982
999 C 5 |a 10.1021/acs.jpca.2c00950
|9 -- missing cx lookup --
|1 AE Hillers-Bendtsen
|p 2670 -
|2 Crossref
|u Hillers-Bendtsen, A. E., Iuel Lunøe Dünweber, P. G., Olsen, L. H. & Mikkelsen, K. V. Prospects of improving molecular solar energy storage of the norbornadiene/quadricyclane system through bridgehead modifications. J. Phys. Chem. A 126, 2670–2676 (2022).
|t J. Phys. Chem. A
|v 126
|y 2022
999 C 5 |a 10.1021/ar50037a001
|9 -- missing cx lookup --
|1 R Hoffmann
|p 1 -
|2 Crossref
|u Hoffmann, R. Interaction of orbitals through space and through bonds. Acc. Chem. Res. 4, 1–9 (1971).
|t Acc. Chem. Res.
|v 4
|y 1971
999 C 5 |a 10.1039/b107442c
|9 -- missing cx lookup --
|2 Crossref
|u Fuß, W., Kuttan Pushpa, K., Schmid, W. E. & Trushin, S. A. Ultrafast [2 + 2]-cycloaddition in norbornadiene. Photochem. Photobiol. Sci. 1, 60–66 (2002).
999 C 5 |a 10.1063/1.3697472
|9 -- missing cx lookup --
|1 F Rudakov
|p 134303 -
|2 Crossref
|u Rudakov, F. & Weber, P. M. Ultrafast structural and isomerization dynamics in the Rydberg-exited quadricyclane:norbornadiene system. J. Chem. Phys. 136, 134303 (2012).
|t J. Chem. Phys.
|v 136
|y 2012
999 C 5 |a 10.1063/5.0031387
|9 -- missing cx lookup --
|1 MH Palmer
|p 204303 -
|2 Crossref
|u Palmer, M. H. et al. High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations. J. Chem. Phys. 153, 204303 (2020).
|t J. Chem. Phys.
|v 153
|y 2020
999 C 5 |a 10.1039/D0CP03435E
|9 -- missing cx lookup --
|1 A Valentini
|p 22302 -
|2 Crossref
|u Valentini, A., van den Wildenberg, S. & Remacle, F. Selective bond formation triggered by short optical pulses: quantum dynamics of a four-center ring closure. Phys. Chem. Chem. Phys. 22, 22302–22313 (2020).
|t Phys. Chem. Chem. Phys.
|v 22
|y 2020
999 C 5 |a 10.1021/acs.joc.2c02758
|9 -- missing cx lookup --
|2 Crossref
|u Hernández, F. J., Cox, J. M., Li, J., Crespo-Otero, R. & Lopez, S. A. Multiconfigurational calculations and photodynamics describe norbornadiene photochemistry. J. Org. Chem. 88, 5311–5320 (2023).
999 C 5 |a 10.1021/jz502487r
|9 -- missing cx lookup --
|1 S Adachi
|p 343 -
|2 Crossref
|u Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).
|t J. Phys. Chem. Lett.
|v 6
|y 2015
999 C 5 |a 10.1038/s41467-018-05292-4
|1 A von Conta
|9 -- missing cx lookup --
|2 Crossref
|u von Conta, A. et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9, 3162 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1103/PhysRevLett.120.183003
|9 -- missing cx lookup --
|1 AD Smith
|p 183003 -
|2 Crossref
|u Smith, A. D. et al. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 120, 183003 (2018).
|t Phys. Rev. Lett.
|v 120
|y 2018
999 C 5 |a 10.1038/s41467-017-02478-0
|1 RJ Squibb
|9 -- missing cx lookup --
|2 Crossref
|u Squibb, R. J. et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1038/s41557-020-0507-3
|9 -- missing cx lookup --
|1 S Pathak
|p 795 -
|2 Crossref
|u Pathak, S. et al. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat. Chem. 12, 795–800 (2020).
|t Nat. Chem.
|v 12
|y 2020
999 C 5 |a 10.1063/5.0151758
|9 -- missing cx lookup --
|1 MH Palmer
|p 234303 -
|2 Crossref
|u Palmer, M. H. et al. High-level studies of the singlet states of quadricyclane, including analysis of a new experimental vacuum ultraviolet absorption spectrum by configuration interaction and density functional calculations. J. Chem. Phys. 158, 234303 (2023).
|t J. Chem. Phys.
|v 158
|y 2023
999 C 5 |a 10.1063/5.0187707
|9 -- missing cx lookup --
|2 Crossref
|u Cooper, J. C. et al. Valence-shell electronically excited states of norbornadiene and quadricyclane, J. Chem. Phys., https://doi.org/10.1063/5.0187707 (2024).
999 C 5 |a 10.1016/j.theochem.2004.09.040
|9 -- missing cx lookup --
|1 JO Jensen
|p 1 -
|2 Crossref
|u Jensen, J. O. Vibrational frequencies and structural determination of cyanogen isocyanate. J. Mol. Struct. THEOCHEM 715, 1–5 (2005).
|t J. Mol. Struct. THEOCHEM
|v 715
|y 2005
999 C 5 |a 10.1016/0924-2031(96)00008-2
|9 -- missing cx lookup --
|1 X Zhou
|p 65 -
|2 Crossref
|u Zhou, X. & Liu, R. Density functional theory study of vibrational spectra. 3. Assignment of fundamental vibrational modes of quadricyclane. Vib. Spectrosc. 12, 65–71 (1996).
|t Vib. Spectrosc.
|v 12
|y 1996
999 C 5 |a 10.1021/acs.jpclett.0c01198
|9 -- missing cx lookup --
|1 U Jacovella
|p 6045 -
|2 Crossref
|u Jacovella, U. et al. Photo- and collision-induced isomerization of a charge-tagged norbornadiene–quadricyclane system. J. Phys. Chem. Lett. 11, 6045–6050 (2020).
|t J. Phys. Chem. Lett.
|v 11
|y 2020
999 C 5 |a 10.1016/B978-0-12-589901-7.50007-0
|9 -- missing cx lookup --
|2 Crossref
|u Robin, M. B. Higher Excited States of Polyatomic Molecules Vol. 1 (Academic Press, 1974).
999 C 5 |a 10.1016/B978-0-12-589903-1.50026-6
|9 -- missing cx lookup --
|2 Crossref
|u Robin, M. B. Higher Excited States of Polyatomic Molecules Vol. 3 (Academic Press, 1985).
999 C 5 |a 10.1021/acs.jpclett.1c02612
|9 -- missing cx lookup --
|2 Crossref
|u Forbes, R. et al. Vacuum ultraviolet excited state dynamics of the smallest ketone: acetone. J. Phys. Chem. Lett. 12, 8541–8547 (2021).
999 C 5 |a 10.1021/acs.jpcb.0c03344
|9 -- missing cx lookup --
|1 H Weir
|p 5476 -
|2 Crossref
|u Weir, H., Williams, M., Parrish, R. M., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J. Phys. Chem. B 124, 5476–5487 (2020).
|t J. Phys. Chem. B
|v 124
|y 2020
999 C 5 |a 10.1039/C4CP02310B
|9 -- missing cx lookup --
|1 A Lietard
|p 22262 -
|2 Crossref
|u Lietard, A. et al. Competitive direct vs. indirect photochromism dynamics of constrained inverse dithienylethene molecules. Phys. Chem. Chem. Phys. 16, 22262–22272 (2014).
|t Phys. Chem. Chem. Phys.
|v 16
|y 2014
999 C 5 |a 10.1103/PhysRevLett.114.255501
|9 -- missing cx lookup --
|1 MP Minitti
|p 255501 -
|2 Crossref
|u Minitti, M. P. et al. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).
|t Phys. Rev. Lett.
|v 114
|y 2015
999 C 5 |a 10.1038/s41557-019-0291-0
|9 -- missing cx lookup --
|1 B Stankus
|p 716 -
|2 Crossref
|u Stankus, B. et al. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11, 716–721 (2019).
|t Nat. Chem.
|v 11
|y 2019
999 C 5 |a 10.1038/s41557-019-0252-7
|9 -- missing cx lookup --
|1 TJA Wolf
|p 504 -
|2 Crossref
|u Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).
|t Nat. Chem.
|v 11
|y 2019
999 C 5 |a 10.1126/science.abb2235
|9 -- missing cx lookup --
|1 J Yang
|p 885 -
|2 Crossref
|u Yang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).
|t Science
|v 368
|y 2020
999 C 5 |a 10.1038/nphoton.2012.233
|9 -- missing cx lookup --
|1 E Allaria
|p 699 -
|2 Crossref
|u Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |a 10.1088/0953-4075/46/16/164007
|9 -- missing cx lookup --
|1 V Lyamayev
|p 164007 -
|2 Crossref
|u Lyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra. J. Phys. B At. Mol. Opt. Phys. 46, 164007 (2013).
|t J. Phys. B At. Mol. Opt. Phys.
|v 46
|y 2013
999 C 5 |a 10.1107/S1600577515005743
|9 -- missing cx lookup --
|1 C Svetina
|p 538 -
|2 Crossref
|u Svetina, C. et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synchrotron Rad. 22, 538–543 (2015).
|t J. Synchrotron Rad.
|v 22
|y 2015
999 C 5 |a 10.1063/5.0030944
|9 -- missing cx lookup --
|1 S Battaglia
|p 034102 -
|2 Crossref
|u Battaglia, S. & Lindh, R. On the role of symmetry in XDW-CASPT2. J. Chem. Phys. 154, 034102 (2021).
|t J. Chem. Phys.
|v 154
|y 2021
999 C 5 |a 10.1063/5.0004835
|9 -- missing cx lookup --
|1 F Aquilante
|p 214117 -
|2 Crossref
|u Aquilante, F. et al. Modern quantum chemistry with [Open]Molcas. J. Chem. Phys. 152, 214117 (2020).
|t J. Chem. Phys.
|v 152
|y 2020
999 C 5 |a 10.1021/acs.jctc.2c00301
|9 -- missing cx lookup --
|1 Y Nishimoto
|p 4269 -
|2 Crossref
|u Nishimoto, Y., Battaglia, S. & Lindh, R. Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods. J. Chem. Theory Comput. 18, 4269–4281 (2022).
|t J. Chem. Theory Comput.
|v 18
|y 2022
999 C 5 |a 10.1002/wcms.1370
|9 -- missing cx lookup --
|2 Crossref
|u Mai, S., Marquetand, P. & González, L. Nonadiabatic dynamics: the SHARC approach. WIREs Comput. Mol. Sci. 8, e1370 (2018).
999 C 5 |a 10.1002/qua.25049
|9 -- missing cx lookup --
|1 M Barbatti
|p 762 -
|2 Crossref
|u Barbatti, M. & Sen, K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 116, 762–771 (2016).
|t Int. J. Quantum Chem.
|v 116
|y 2016
999 C 5 |a 10.1038/srep35522
|1 M Ruckenbauer
|9 -- missing cx lookup --
|2 Crossref
|u Ruckenbauer, M., Mai, S., Marquetand, P. & González, L. Revealing deactivation pathways hidden in time-resolved photoelectron spectra. Sci. Rep. 6, 35522 (2016).
|t Sci. Rep.
|v 6
|y 2016


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21