000605377 001__ 605377
000605377 005__ 20250715170707.0
000605377 0247_ $$2doi$$a10.1038/s41557-023-01420-w
000605377 0247_ $$2ISSN$$a1755-4330
000605377 0247_ $$2ISSN$$a1755-4349
000605377 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01444
000605377 0247_ $$2altmetric$$aaltmetric:159003226
000605377 0247_ $$2pmid$$apmid:38307994
000605377 0247_ $$2WOS$$aWOS:001156518100001
000605377 0247_ $$2openalex$$aopenalex:W4391474863
000605377 037__ $$aPUBDB-2024-01444
000605377 041__ $$aEnglish
000605377 082__ $$a540
000605377 1001_ $$0P:(DE-H253)PIP1089399$$aBorne, Kurtis D.$$b0
000605377 245__ $$aUltrafast electronic relaxation pathways of the molecular photoswitch quadricyclane
000605377 260__ $$aLondon$$bNature Publishing Group$$c2024
000605377 3367_ $$2DRIVER$$aarticle
000605377 3367_ $$2DataCite$$aOutput Types/Journal article
000605377 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715156798_3532560
000605377 3367_ $$2BibTeX$$aARTICLE
000605377 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000605377 3367_ $$00$$2EndNote$$aJournal Article
000605377 520__ $$aThe light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2. 
000605377 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000605377 542__ $$2Crossref$$i2024-02-02$$uhttps://creativecommons.org/licenses/by/4.0
000605377 542__ $$2Crossref$$i2024-02-02$$uhttps://creativecommons.org/licenses/by/4.0
000605377 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000605377 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000605377 7001_ $$0P:(DE-HGF)0$$aCooper, Joseph C.$$b1
000605377 7001_ $$0P:(DE-H253)PIP1095429$$aashfold, michael$$b2
000605377 7001_ $$00000-0001-6480-6212$$aBachmann, Julien$$b3
000605377 7001_ $$0P:(DE-H253)PIP1095450$$aBhattacharyya, Surjendu$$b4
000605377 7001_ $$0P:(DE-H253)PIP1014282$$aBoll, Rebecca$$b5
000605377 7001_ $$0P:(DE-H253)PIP1102077$$aBonanomi, Matteo$$b6
000605377 7001_ $$00000-0003-0837-8780$$aBosch, Michael$$b7
000605377 7001_ $$0P:(DE-H253)PIP1085429$$aCallegari, Carlo$$b8
000605377 7001_ $$0P:(DE-H253)PIP1089434$$aCenturion, Martin$$b9
000605377 7001_ $$0P:(DE-H253)PIP1085139$$aCoreno, Marcello$$b10
000605377 7001_ $$0P:(DE-H253)PIP1095435$$aCurchod, Basile$$b11
000605377 7001_ $$0P:(DE-HGF)0$$aDanailov, Miltcho B.$$b12
000605377 7001_ $$00000-0003-2355-2257$$aDemidovich, Alexander$$b13
000605377 7001_ $$0P:(DE-H253)PIP1110127$$aDi Fraia, Michele$$b14
000605377 7001_ $$0P:(DE-H253)PIP1011809$$aErk, Benjamin$$b15
000605377 7001_ $$0P:(DE-H253)PIP1089922$$aFacciala, Davide$$b16
000605377 7001_ $$0P:(DE-H253)PIP1009717$$aFeifel, Raimund$$b17
000605377 7001_ $$0P:(DE-H253)PIP1088346$$aForbes, Ruaridh$$b18
000605377 7001_ $$0P:(DE-H253)PIP1022924$$aHansen, Christopher$$b19
000605377 7001_ $$0P:(DE-H253)PIP1007674$$aHolland, David$$b20
000605377 7001_ $$0P:(DE-H253)PIP1031944$$aIngle, Rebecca$$b21
000605377 7001_ $$00000-0001-7567-8295$$aLindh, Roland$$b22
000605377 7001_ $$0P:(DE-H253)PIP1096862$$aMa, Lingyu$$b23
000605377 7001_ $$0P:(DE-H253)PIP1104326$$aMcGhee, Henry G.$$b24
000605377 7001_ $$00000-0002-1051-019X$$aMuvva, Sri Bhavya$$b25
000605377 7001_ $$00000-0003-0670-6023$$aNunes, Joao Pedro Figueira$$b26
000605377 7001_ $$0P:(DE-HGF)0$$aOdate, Asami$$b27
000605377 7001_ $$0P:(DE-H253)PIP1081206$$aPathak, Shashank$$b28
000605377 7001_ $$0P:(DE-H253)PIP1091812$$aPlekan, Oksana$$b29
000605377 7001_ $$0P:(DE-H253)PIP1091774$$aPrince, Kevin$$b30
000605377 7001_ $$0P:(DE-HGF)0$$aRebernik, Primoz$$b31
000605377 7001_ $$0P:(DE-H253)PIP1008275$$aRouzée, Arnaud$$b32
000605377 7001_ $$0P:(DE-H253)PIP1006803$$aRudenko, Artem$$b33
000605377 7001_ $$0P:(DE-H253)PIP1012302$$aSimoncig, Alberto$$b34
000605377 7001_ $$0P:(DE-H253)PIP1088196$$aSquibb, Richard$$b35
000605377 7001_ $$0P:(DE-H253)PIP1096868$$aVenkatachalam, Anbu$$b36
000605377 7001_ $$0P:(DE-H253)PIP1085073$$aVozzi, Caterina$$b37
000605377 7001_ $$0P:(DE-HGF)0$$aWeber, Peter M.$$b38
000605377 7001_ $$0P:(DE-HGF)0$$aKirrander, Adam$$b39$$eCorresponding author
000605377 7001_ $$0P:(DE-H253)PIP1007320$$aRolles, Daniel$$b40$$eCorresponding author
000605377 77318 $$2Crossref$$3journal-article$$a10.1038/s41557-023-01420-w$$bSpringer Science and Business Media LLC$$d2024-02-02$$n4$$p499-505$$tNature Chemistry$$v16$$x1755-4330$$y2024
000605377 773__ $$0PERI:(DE-600)2464596-5$$a10.1038/s41557-023-01420-w$$gVol. 16, no. 4, p. 499 - 505$$n4$$p499-505$$tNature chemistry$$v16$$x1755-4330$$y2024
000605377 8564_ $$uhttps://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf$$yOpenAccess
000605377 8564_ $$uhttps://bib-pubdb1.desy.de/record/605377/files/s41557-023-01420-w.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000605377 909CO $$ooai:bib-pubdb1.desy.de:605377$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089399$$aExternal Institute$$b0$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1089399$$aEuropean XFEL$$b0$$kXFEL.EU
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095429$$aEuropean XFEL$$b2$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095429$$aExternal Institute$$b2$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095450$$aEuropean XFEL$$b4$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095450$$aExternal Institute$$b4$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014282$$aEuropean XFEL$$b5$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102077$$aExternal Institute$$b6$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1102077$$aEuropean XFEL$$b6$$kXFEL.EU
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085429$$aEuropean XFEL$$b8$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085429$$aExternal Institute$$b8$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089434$$aExternal Institute$$b9$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1089434$$aEuropean XFEL$$b9$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085139$$aExternal Institute$$b10$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085139$$aEuropean XFEL$$b10$$kXFEL.EU
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095435$$aEuropean XFEL$$b11$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095435$$aExternal Institute$$b11$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1110127$$aExternal Institute$$b14$$kExtern
000605377 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011809$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1011809$$aEuropean XFEL$$b15$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089922$$aExternal Institute$$b16$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009717$$aExternal Institute$$b17$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1088346$$aEuropean XFEL$$b18$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088346$$aExternal Institute$$b18$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1022924$$aExternal Institute$$b19$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007674$$aExternal Institute$$b20$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1031944$$aExternal Institute$$b21$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1096862$$aEuropean XFEL$$b23$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096862$$aExternal Institute$$b23$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104326$$aExternal Institute$$b24$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1081206$$aEuropean XFEL$$b28$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081206$$aExternal Institute$$b28$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1091812$$aEuropean XFEL$$b29$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091812$$aExternal Institute$$b29$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1091774$$aEuropean XFEL$$b30$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091774$$aExternal Institute$$b30$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008275$$aExternal Institute$$b32$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008275$$aEuropean XFEL$$b32$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1006803$$aExternal Institute$$b33$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012302$$aExternal Institute$$b34$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088196$$aExternal Institute$$b35$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1096868$$aEuropean XFEL$$b36$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096868$$aExternal Institute$$b36$$kExtern
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085073$$aExternal Institute$$b37$$kExtern
000605377 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085073$$aEuropean XFEL$$b37$$kXFEL.EU
000605377 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007320$$aExternal Institute$$b40$$kExtern
000605377 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000605377 9141_ $$y2024
000605377 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-08-29
000605377 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000605377 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000605377 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000605377 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-29$$wger
000605377 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000605377 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-08-29
000605377 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000605377 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000605377 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT CHEM : 2022$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
000605377 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT CHEM : 2022$$d2025-01-02
000605377 9201_ $$0I:(DE-H253)FS-FLASH-O-20160930$$kFS-FLASH-O$$lFLASH Wissenschaftlicher Nutzerbetrieb$$x0
000605377 9201_ $$0I:(DE-H253)XFEL_E2_SQS-20210408$$kXFEL_E2_SQS$$lSQS$$x1
000605377 980__ $$ajournal
000605377 980__ $$aVDB
000605377 980__ $$aUNRESTRICTED
000605377 980__ $$aI:(DE-H253)FS-FLASH-O-20160930
000605377 980__ $$aI:(DE-H253)XFEL_E2_SQS-20210408
000605377 9801_ $$aFullTexts
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9783527827626$$uPianowski, Z. L. Molecular Photoswitches: Chemistry, Properties, and Applications Vols 1 and 2 (Wiley, 2022).
000605377 999C5 $$1E Franz$$2Crossref$$9-- missing cx lookup --$$a10.1021/acscatal.2c03043$$p13418 -$$tACS Catal.$$uFranz, E. et al. Tunable energy release in a reversible molecular solar thermal system. ACS Catal. 12, 13418–13425 (2022).$$v12$$y2022
000605377 999C5 $$1Z Wang$$2Crossref$$9-- missing cx lookup --$$a10.1039/D1CS00890K$$p7313 -$$tChem. Soc. Rev.$$uWang, Z., Hölzel, H. & Moth-Poulsen, K. Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 51, 7313–7326 (2022).$$v51$$y2022
000605377 999C5 $$1I Antol$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.23270$$p1439 -$$tJ. Comput. Chem.$$uAntol, I. Photodeactivation paths in norbornadiene. J. Comput. Chem. 34, 1439–1445 (2013).$$v34$$y2013
000605377 999C5 $$1K Jorner$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7TA04259K$$p12369 -$$tJ. Mater. Chem. A$$uJorner, K. et al. Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal energy storage systems. J. Mater. Chem. A 5, 12369–12378 (2017).$$v5$$y2017
000605377 999C5 $$1A Dreos$$2Crossref$$9-- missing cx lookup --$$a10.1002/aenm.201703401$$p1703401 -$$tAdv. Energy Mater.$$uDreos, A. et al. Liquid norbornadiene photoswitches for solar energy storage. Adv. Energy Mater. 8, 1703401 (2018).$$v8$$y2018
000605377 999C5 $$1J Orrego-Hernández$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.accounts.0c00235$$p1478 -$$tAcc. Chem. Res.$$uOrrego-Hernández, J., Dreos, A. & Moth-Poulsen, K. Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications. Acc. Chem. Res. 53, 1478–1487 (2020).$$v53$$y2020
000605377 999C5 $$1W Alex$$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.1c04322$$p153 -$$tJ. Am. Chem. Soc.$$uAlex, W. et al. Solar energy storage: competition between delocalized charge transfer and localized excited states in the norbornadiene to quadricyclane photoisomerization. J. Am. Chem. Soc. 144, 153–162 (2022).$$v144$$y2022
000605377 999C5 $$1F Coppola$$2Crossref$$9-- missing cx lookup --$$a10.1002/cptc.202200214$$pe202200214 -$$tChemPhotoChem$$uCoppola, F., Nucci, M., Marazzi, M., Rocca, D. & Pastore, M. Norbornadiene/quadricyclane system in the spotlight: the role of Rydberg states and dynamic electronic correlation in a solar-thermal building block. ChemPhotoChem 7, e202200214 (2023).$$v7$$y2023
000605377 999C5 $$1JWF Van Ingen$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1674547$$p3665 -$$tJ. Chem. Phys.$$uVan Ingen, J. W. F., Van Tieghem, C. H. C. & Cramer, W. A. Radiation-induced isomerization of [2,2,1] bicycloheptadiene (norbornadiene) to [2,2,1,02,6,03,5] quadricycloheptane (quadricyclene) in cyclohexane solutions. J. Chem. Phys. 53, 3665–3674 (1970).$$v53$$y1970
000605377 999C5 $$1G Jones$$2Crossref$$9-- missing cx lookup --$$a10.1039/C39800000681$$p681 -$$tJ. Chem. Soc., Chem. Commun.$$uJones, G., Chiang, S.-H., Becker, W. G. & Greenberg, D. P. Structure-reactivity factors for exciplex isomerization of quadricyclene and related compounds. J. Chem. Soc., Chem. Commun. 15, 681–683 (1980).$$v15$$y1980
000605377 999C5 $$1G Jones$$2Crossref$$9-- missing cx lookup --$$a10.1021/j100212a001$$p2805 -$$tJ. Phys. Chem.$$uJones, G., Chiang, S. H., Becker, W. G. & Welch, J. A. Photosensitization of quadricyclene isomerization by electron acceptors. A short-circuit nonradiative decay mechanism for electron donor-acceptor quenching in polar media. J. Phys. Chem. 86, 2805–2808 (1982).$$v86$$y1982
000605377 999C5 $$1AE Hillers-Bendtsen$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpca.2c00950$$p2670 -$$tJ. Phys. Chem. A$$uHillers-Bendtsen, A. E., Iuel Lunøe Dünweber, P. G., Olsen, L. H. & Mikkelsen, K. V. Prospects of improving molecular solar energy storage of the norbornadiene/quadricyclane system through bridgehead modifications. J. Phys. Chem. A 126, 2670–2676 (2022).$$v126$$y2022
000605377 999C5 $$1R Hoffmann$$2Crossref$$9-- missing cx lookup --$$a10.1021/ar50037a001$$p1 -$$tAcc. Chem. Res.$$uHoffmann, R. Interaction of orbitals through space and through bonds. Acc. Chem. Res. 4, 1–9 (1971).$$v4$$y1971
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b107442c$$uFuß, W., Kuttan Pushpa, K., Schmid, W. E. & Trushin, S. A. Ultrafast [2 + 2]-cycloaddition in norbornadiene. Photochem. Photobiol. Sci. 1, 60–66 (2002).
000605377 999C5 $$1F Rudakov$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3697472$$p134303 -$$tJ. Chem. Phys.$$uRudakov, F. & Weber, P. M. Ultrafast structural and isomerization dynamics in the Rydberg-exited quadricyclane:norbornadiene system. J. Chem. Phys. 136, 134303 (2012).$$v136$$y2012
000605377 999C5 $$1MH Palmer$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0031387$$p204303 -$$tJ. Chem. Phys.$$uPalmer, M. H. et al. High-level studies of the ionic states of norbornadiene and quadricyclane, including analysis of new experimental photoelectron spectra by configuration interaction and coupled cluster calculations. J. Chem. Phys. 153, 204303 (2020).$$v153$$y2020
000605377 999C5 $$1A Valentini$$2Crossref$$9-- missing cx lookup --$$a10.1039/D0CP03435E$$p22302 -$$tPhys. Chem. Chem. Phys.$$uValentini, A., van den Wildenberg, S. & Remacle, F. Selective bond formation triggered by short optical pulses: quantum dynamics of a four-center ring closure. Phys. Chem. Chem. Phys. 22, 22302–22313 (2020).$$v22$$y2020
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.joc.2c02758$$uHernández, F. J., Cox, J. M., Li, J., Crespo-Otero, R. & Lopez, S. A. Multiconfigurational calculations and photodynamics describe norbornadiene photochemistry. J. Org. Chem. 88, 5311–5320 (2023).
000605377 999C5 $$1S Adachi$$2Crossref$$9-- missing cx lookup --$$a10.1021/jz502487r$$p343 -$$tJ. Phys. Chem. Lett.$$uAdachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).$$v6$$y2015
000605377 999C5 $$1A von Conta$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-05292-4$$tNat. Commun.$$uvon Conta, A. et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9, 3162 (2018).$$v9$$y2018
000605377 999C5 $$1AD Smith$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.183003$$p183003 -$$tPhys. Rev. Lett.$$uSmith, A. D. et al. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 120, 183003 (2018).$$v120$$y2018
000605377 999C5 $$1RJ Squibb$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-02478-0$$tNat. Commun.$$uSquibb, R. J. et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018).$$v9$$y2018
000605377 999C5 $$1S Pathak$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-020-0507-3$$p795 -$$tNat. Chem.$$uPathak, S. et al. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat. Chem. 12, 795–800 (2020).$$v12$$y2020
000605377 999C5 $$1MH Palmer$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0151758$$p234303 -$$tJ. Chem. Phys.$$uPalmer, M. H. et al. High-level studies of the singlet states of quadricyclane, including analysis of a new experimental vacuum ultraviolet absorption spectrum by configuration interaction and density functional calculations. J. Chem. Phys. 158, 234303 (2023).$$v158$$y2023
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0187707$$uCooper, J. C. et al. Valence-shell electronically excited states of norbornadiene and quadricyclane, J. Chem. Phys., https://doi.org/10.1063/5.0187707 (2024).
000605377 999C5 $$1JO Jensen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.theochem.2004.09.040$$p1 -$$tJ. Mol. Struct. THEOCHEM$$uJensen, J. O. Vibrational frequencies and structural determination of cyanogen isocyanate. J. Mol. Struct. THEOCHEM 715, 1–5 (2005).$$v715$$y2005
000605377 999C5 $$1X Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1016/0924-2031(96)00008-2$$p65 -$$tVib. Spectrosc.$$uZhou, X. & Liu, R. Density functional theory study of vibrational spectra. 3. Assignment of fundamental vibrational modes of quadricyclane. Vib. Spectrosc. 12, 65–71 (1996).$$v12$$y1996
000605377 999C5 $$1U Jacovella$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.0c01198$$p6045 -$$tJ. Phys. Chem. Lett.$$uJacovella, U. et al. Photo- and collision-induced isomerization of a charge-tagged norbornadiene–quadricyclane system. J. Phys. Chem. Lett. 11, 6045–6050 (2020).$$v11$$y2020
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-589901-7.50007-0$$uRobin, M. B. Higher Excited States of Polyatomic Molecules Vol. 1 (Academic Press, 1974).
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-12-589903-1.50026-6$$uRobin, M. B. Higher Excited States of Polyatomic Molecules Vol. 3 (Academic Press, 1985).
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.1c02612$$uForbes, R. et al. Vacuum ultraviolet excited state dynamics of the smallest ketone: acetone. J. Phys. Chem. Lett. 12, 8541–8547 (2021).
000605377 999C5 $$1H Weir$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcb.0c03344$$p5476 -$$tJ. Phys. Chem. B$$uWeir, H., Williams, M., Parrish, R. M., Hohenstein, E. G. & Martínez, T. J. Nonadiabatic dynamics of photoexcited cis-stilbene using ab initio multiple spawning. J. Phys. Chem. B 124, 5476–5487 (2020).$$v124$$y2020
000605377 999C5 $$1A Lietard$$2Crossref$$9-- missing cx lookup --$$a10.1039/C4CP02310B$$p22262 -$$tPhys. Chem. Chem. Phys.$$uLietard, A. et al. Competitive direct vs. indirect photochromism dynamics of constrained inverse dithienylethene molecules. Phys. Chem. Chem. Phys. 16, 22262–22272 (2014).$$v16$$y2014
000605377 999C5 $$1MP Minitti$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.255501$$p255501 -$$tPhys. Rev. Lett.$$uMinitti, M. P. et al. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).$$v114$$y2015
000605377 999C5 $$1B Stankus$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-019-0291-0$$p716 -$$tNat. Chem.$$uStankus, B. et al. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11, 716–721 (2019).$$v11$$y2019
000605377 999C5 $$1TJA Wolf$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41557-019-0252-7$$p504 -$$tNat. Chem.$$uWolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).$$v11$$y2019
000605377 999C5 $$1J Yang$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb2235$$p885 -$$tScience$$uYang, J. et al. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368, 885–889 (2020).$$v368$$y2020
000605377 999C5 $$1E Allaria$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2012.233$$p699 -$$tNat. Photon.$$uAllaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).$$v6$$y2012
000605377 999C5 $$1V Lyamayev$$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-4075/46/16/164007$$p164007 -$$tJ. Phys. B At. Mol. Opt. Phys.$$uLyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra. J. Phys. B At. Mol. Opt. Phys. 46, 164007 (2013).$$v46$$y2013
000605377 999C5 $$1C Svetina$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515005743$$p538 -$$tJ. Synchrotron Rad.$$uSvetina, C. et al. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synchrotron Rad. 22, 538–543 (2015).$$v22$$y2015
000605377 999C5 $$1S Battaglia$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0030944$$p034102 -$$tJ. Chem. Phys.$$uBattaglia, S. & Lindh, R. On the role of symmetry in XDW-CASPT2. J. Chem. Phys. 154, 034102 (2021).$$v154$$y2021
000605377 999C5 $$1F Aquilante$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0004835$$p214117 -$$tJ. Chem. Phys.$$uAquilante, F. et al. Modern quantum chemistry with [Open]Molcas. J. Chem. Phys. 152, 214117 (2020).$$v152$$y2020
000605377 999C5 $$1Y Nishimoto$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.2c00301$$p4269 -$$tJ. Chem. Theory Comput.$$uNishimoto, Y., Battaglia, S. & Lindh, R. Analytic first-order derivatives of (X)MS, XDW, and RMS variants of the CASPT2 and RASPT2 methods. J. Chem. Theory Comput. 18, 4269–4281 (2022).$$v18$$y2022
000605377 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1370$$uMai, S., Marquetand, P. & González, L. Nonadiabatic dynamics: the SHARC approach. WIREs Comput. Mol. Sci. 8, e1370 (2018).
000605377 999C5 $$1M Barbatti$$2Crossref$$9-- missing cx lookup --$$a10.1002/qua.25049$$p762 -$$tInt. J. Quantum Chem.$$uBarbatti, M. & Sen, K. Effects of different initial condition samplings on photodynamics and spectrum of pyrrole. Int. J. Quantum Chem. 116, 762–771 (2016).$$v116$$y2016
000605377 999C5 $$1M Ruckenbauer$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep35522$$tSci. Rep.$$uRuckenbauer, M., Mai, S., Marquetand, P. & González, L. Revealing deactivation pathways hidden in time-resolved photoelectron spectra. Sci. Rep. 6, 35522 (2016).$$v6$$y2016