000605338 001__ 605338
000605338 005__ 20250715170638.0
000605338 0247_ $$2doi$$a10.1002/adma.202309842
000605338 0247_ $$2ISSN$$a0935-9648
000605338 0247_ $$2ISSN$$a1521-4095
000605338 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01425
000605338 0247_ $$2altmetric$$aaltmetric:158744223
000605338 0247_ $$2pmid$$apmid:38269958
000605338 0247_ $$2WOS$$aWOS:001150573000001
000605338 0247_ $$2openalex$$aopenalex:W4391229308
000605338 037__ $$aPUBDB-2024-01425
000605338 041__ $$aEnglish
000605338 082__ $$a660
000605338 1001_ $$0P:(DE-H253)PIP1098115$$aLi, Yongchun$$b0
000605338 245__ $$aCompeting Mechanisms Determine Oxygen Redox in Doped Ni–Mn Based Layered Oxides for Na‐Ion Batteries
000605338 260__ $$aWeinheim$$bWiley-VCH$$c2023
000605338 3367_ $$2DRIVER$$aarticle
000605338 3367_ $$2DataCite$$aOutput Types/Journal article
000605338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716381119_1909
000605338 3367_ $$2BibTeX$$aARTICLE
000605338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000605338 3367_ $$00$$2EndNote$$aJournal Article
000605338 520__ $$aCation doping is an effective strategy for improving the cyclability of layered oxide cathode materials through suppression of phase transitions in the high voltage region. In this study, Mg and Sc are chosen as dopants in P2-Na$_{0.67}$Ni$_{0.33}$Mn$_{0.67}$O$_2$, and both have found to positively impact the cycling stability, but influence the high voltage regime in different ways. Through a combination of synchrotron-based methods and theoretical calculations it is shown that it is more than just suppression of the P2 to O2 phase transition that is critical for promoting the favorable properties, and that the interplay between Ni and O activity is also a critical aspect that dictates the performance. With Mg doping, the Ni activity can be enhanced while simultaneously suppressing the O activity. This is surprising because it is in contrast to what has been reported in other Mn-based layered oxides where Mg is known to trigger oxygen redox. This contradiction is addressed by proposing a competing mechanism between Ni and Mg that impacts differences in O activity in Na$_{0.67}$MgxNi$_{0.33-x}$Mn$_{0.67}$O$_2$ (x < 0 < 0.33). These findings provide a new direction in understanding the effects of cation doping on the electrochemical behavior of layered oxides. 
000605338 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000605338 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000605338 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000605338 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000605338 7001_ $$0P:(DE-H253)PIP1098084$$aMazzio, Katherine$$b1$$eCorresponding author
000605338 7001_ $$00000-0001-8531-7477$$aYaqoob, Najma$$b2
000605338 7001_ $$0P:(DE-H253)PIP1102693$$aSun, Yanan$$b3
000605338 7001_ $$0P:(DE-H253)PIP1101442$$aFreytag, Annica I.$$b4
000605338 7001_ $$00000-0001-7126-0019$$aWong, Deniz$$b5
000605338 7001_ $$aSchulz, Christian$$b6
000605338 7001_ $$0P:(DE-H253)PIP1031172$$aBaran, Volodymyr$$b7
000605338 7001_ $$0P:(DE-H253)PIP1080469$$aSan Jose Mendez, Alba$$b8
000605338 7001_ $$00000-0002-0624-2719$$aSchuck, Götz$$b9
000605338 7001_ $$00000-0001-6980-5315$$aZając, Marcin$$b10
000605338 7001_ $$00000-0002-1541-7760$$aKaghazchi, Payam$$b11$$eCorresponding author
000605338 7001_ $$0P:(DE-H253)PIP1098137$$aAdelhelm, Philipp$$b12$$eCorresponding author
000605338 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202309842$$gp. 2309842$$n18$$p2309842$$tAdvanced materials$$v36$$x0935-9648$$y2023
000605338 8564_ $$uhttps://bib-pubdb1.desy.de/record/605338/files/Advanced%20Materials%20-%202024%20-%20Li%20-%20Competing%20Mechanisms%20Determine%20Oxygen%20Redox%20in%20Doped%20Ni%20Mn%20Based%20Layered%20Oxides%20for%20Na%E2%80%90Ion.pdf$$yOpenAccess
000605338 8564_ $$uhttps://bib-pubdb1.desy.de/record/605338/files/Advanced%20Materials%20-%202024%20-%20Li%20-%20Competing%20Mechanisms%20Determine%20Oxygen%20Redox%20in%20Doped%20Ni%20Mn%20Based%20Layered%20Oxides%20for%20Na%E2%80%90Ion.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000605338 909CO $$ooai:bib-pubdb1.desy.de:605338$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098115$$aExternal Institute$$b0$$kExtern
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098084$$aExternal Institute$$b1$$kExtern
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102693$$aExternal Institute$$b3$$kExtern
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101442$$aExternal Institute$$b4$$kExtern
000605338 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031172$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080469$$aExternal Institute$$b8$$kExtern
000605338 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080469$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000605338 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098137$$aExternal Institute$$b12$$kExtern
000605338 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000605338 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000605338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
000605338 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000605338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000605338 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000605338 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000605338 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000605338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000605338 9201_ $$0I:(DE-H253)FS-PETRA-D-20210408$$kFS-PETRA-D$$lPETRA-D$$x0
000605338 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x1
000605338 980__ $$ajournal
000605338 980__ $$aVDB
000605338 980__ $$aUNRESTRICTED
000605338 980__ $$aI:(DE-H253)FS-PETRA-D-20210408
000605338 980__ $$aI:(DE-H253)HAS-User-20120731
000605338 9801_ $$aFullTexts