001     605270
005     20250715170851.0
024 7 _ |a 10.1021/acs.nanolett.4c00658
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-01388
|2 datacite_doi
024 7 _ |a altmetric:161203650
|2 altmetric
024 7 _ |a pmid:38530705
|2 pmid
024 7 _ |a WOS:001191218800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4393189185
037 _ _ |a PUBDB-2024-01388
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wong, Kai-Fu
|0 P:(DE-H253)PIP1094385
|b 0
245 _ _ |a Far-Field Petahertz Sampling of Plasmonic Fields
260 _ _ |a Washington, DC
|c 2024
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718364839_2452646
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The response of metal nanostructures to optical excitation leads to localized surface plasmon (LSP) generation with nanoscale field confinement driving applications in, for example,quantum optics and nanophotonics. Field sampling in the terahertz domain has had a tremendous impact on the ability to trace such collective excitations. Here, we extend such capabilities and introduce direct sampling of LSPs in a more relevant petahertz domain. The method allows to measure the LSP field in arbitrary nanostructures with subcycle precision. We demonstrate the technique for colloidal nanoparticles and compare the results to finite-difference time-domain calculations, which show that the build-up and dephasing of the plasmonic excitation can be resolved. Furthermore, we observe a reshaping of the spectral phase of the few-cycle pulse, and we demonstrate ad-hoc pulse shaping by tailoring the plasmonic sample. The methodology can be extended to single nanosystems and applied in exploring subcycle, attosecond phenomena.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
536 _ _ |a DFG project 194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)
|0 G:(GEPRIS)194651731
|c 194651731
|x 2
542 _ _ |i 2024-03-26
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Li, Weiwei
|0 P:(DE-H253)PIP1090286
|b 1
700 1 _ |a Wang, Zilong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wanie, Vincent
|0 P:(DE-H253)PIP1083947
|b 3
700 1 _ |a Maansson, Erik
|0 P:(DE-H253)PIP1082891
|b 4
|u desy
700 1 _ |a Hoeing, Dominik
|0 P:(DE-H253)PIP1092439
|b 5
700 1 _ |a Blochl, Johannes
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nubbemeyer, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Azzeer, Abdallah M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Trabattoni, Andrea
|0 P:(DE-H253)PIP1028302
|b 9
|u desy
700 1 _ |a Lange, Holger
|0 P:(DE-H253)PIP1087060
|b 10
|e Corresponding author
700 1 _ |a Calegari, Francesca
|0 P:(DE-H253)PIP1023238
|b 11
|e Corresponding author
700 1 _ |a Kling, Matthias
|0 P:(DE-H253)PIP1008381
|b 12
|e Corresponding author
773 1 8 |a 10.1021/acs.nanolett.4c00658
|b American Chemical Society (ACS)
|d 2024-03-26
|n 18
|p 5506-5512
|3 journal-article
|2 Crossref
|t Nano Letters
|v 24
|y 2024
|x 1530-6984
773 _ _ |a 10.1021/acs.nanolett.4c00658
|g p. acs.nanolett.4c00658
|0 PERI:(DE-600)2048866-X
|n 18
|p 5506-5512
|t Nano letters
|v 24
|y 2024
|x 1530-6984
856 4 _ |u https://bib-pubdb1.desy.de/record/605270/files/wong-et-al-2024-far-field-petahertz-sampling-of-plasmonic-fields.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/605270/files/wong-et-al-2024-far-field-petahertz-sampling-of-plasmonic-fields.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:605270
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1094385
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1094385
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1090286
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1083947
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 3
|6 P:(DE-H253)PIP1083947
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1082891
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1092439
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1028302
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1087060
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1087060
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1023238
910 1 _ |a Hamburg University
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-H253)PIP1023238
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1008381
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 12
|6 P:(DE-H253)PIP1008381
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
920 1 _ |0 I:(DE-H253)FS-ATTO-20170403
|k FS-ATTO
|l Attosecond Science and Technology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-ATTO-20170403
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1007/0-387-37825-1
|1 Maier S. A.
|2 Crossref
|9 -- missing cx lookup --
|y 2007
999 C 5 |a 10.1002/anie.201205748
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-020-2684-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.92.025003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphoton.2012.244
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-020-2508-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.aax3766
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adom.202001520
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.163901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsphotonics.0c01065
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nantod.2019.05.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/AOP.9.000775
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.3c00920
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemrev.7b00430
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1515/nanoph-2020-0229
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl101090s
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.243901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/OPTICA.420683
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41566-021-00792-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41467-024-45564-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/2040-8986/aaa114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6455/ac8032
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/OPTICA.5.000402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1210713
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-023-32808-w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsnano.5b06199
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2015.165
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/JOSAB.33.0000A1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.2c04980
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/ppsc.201300256
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adom.202270097
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C6NR00607H
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21