000605270 001__ 605270 000605270 005__ 20250715170851.0 000605270 0247_ $$2doi$$a10.1021/acs.nanolett.4c00658 000605270 0247_ $$2ISSN$$a1530-6984 000605270 0247_ $$2ISSN$$a1530-6992 000605270 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01388 000605270 0247_ $$2altmetric$$aaltmetric:161203650 000605270 0247_ $$2pmid$$apmid:38530705 000605270 0247_ $$2WOS$$aWOS:001191218800001 000605270 0247_ $$2openalex$$aopenalex:W4393189185 000605270 037__ $$aPUBDB-2024-01388 000605270 041__ $$aEnglish 000605270 082__ $$a660 000605270 1001_ $$0P:(DE-H253)PIP1094385$$aWong, Kai-Fu$$b0 000605270 245__ $$aFar-Field Petahertz Sampling of Plasmonic Fields 000605270 260__ $$aWashington, DC$$bACS Publ.$$c2024 000605270 3367_ $$2DRIVER$$aarticle 000605270 3367_ $$2DataCite$$aOutput Types/Journal article 000605270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718364839_2452646 000605270 3367_ $$2BibTeX$$aARTICLE 000605270 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000605270 3367_ $$00$$2EndNote$$aJournal Article 000605270 520__ $$aThe response of metal nanostructures to optical excitation leads to localized surface plasmon (LSP) generation with nanoscale field confinement driving applications in, for example,quantum optics and nanophotonics. Field sampling in the terahertz domain has had a tremendous impact on the ability to trace such collective excitations. Here, we extend such capabilities and introduce direct sampling of LSPs in a more relevant petahertz domain. The method allows to measure the LSP field in arbitrary nanostructures with subcycle precision. We demonstrate the technique for colloidal nanoparticles and compare the results to finite-difference time-domain calculations, which show that the build-up and dephasing of the plasmonic excitation can be resolved. Furthermore, we observe a reshaping of the spectral phase of the few-cycle pulse, and we demonstrate ad-hoc pulse shaping by tailoring the plasmonic sample. The methodology can be extended to single nanosystems and applied in exploring subcycle, attosecond phenomena. 000605270 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0 000605270 536__ $$0G:(GEPRIS)390715994$$aDFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x1 000605270 536__ $$0G:(GEPRIS)194651731$$aDFG project 194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)$$c194651731$$x2 000605270 542__ $$2Crossref$$i2024-03-26$$uhttps://creativecommons.org/licenses/by-nc-nd/4.0/ 000605270 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000605270 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000605270 7001_ $$0P:(DE-H253)PIP1090286$$aLi, Weiwei$$b1 000605270 7001_ $$0P:(DE-HGF)0$$aWang, Zilong$$b2 000605270 7001_ $$0P:(DE-H253)PIP1083947$$aWanie, Vincent$$b3 000605270 7001_ $$0P:(DE-H253)PIP1082891$$aMaansson, Erik$$b4$$udesy 000605270 7001_ $$0P:(DE-H253)PIP1092439$$aHoeing, Dominik$$b5 000605270 7001_ $$0P:(DE-HGF)0$$aBlochl, Johannes$$b6 000605270 7001_ $$0P:(DE-HGF)0$$aNubbemeyer, Thomas$$b7 000605270 7001_ $$0P:(DE-HGF)0$$aAzzeer, Abdallah M.$$b8 000605270 7001_ $$0P:(DE-H253)PIP1028302$$aTrabattoni, Andrea$$b9$$udesy 000605270 7001_ $$0P:(DE-H253)PIP1087060$$aLange, Holger$$b10$$eCorresponding author 000605270 7001_ $$0P:(DE-H253)PIP1023238$$aCalegari, Francesca$$b11$$eCorresponding author 000605270 7001_ $$0P:(DE-H253)PIP1008381$$aKling, Matthias$$b12$$eCorresponding author 000605270 77318 $$2Crossref$$3journal-article$$a10.1021/acs.nanolett.4c00658$$bAmerican Chemical Society (ACS)$$d2024-03-26$$n18$$p5506-5512$$tNano Letters$$v24$$x1530-6984$$y2024 000605270 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.4c00658$$gp. acs.nanolett.4c00658$$n18$$p5506-5512$$tNano letters$$v24$$x1530-6984$$y2024 000605270 8564_ $$uhttps://bib-pubdb1.desy.de/record/605270/files/wong-et-al-2024-far-field-petahertz-sampling-of-plasmonic-fields.pdf$$yOpenAccess 000605270 8564_ $$uhttps://bib-pubdb1.desy.de/record/605270/files/wong-et-al-2024-far-field-petahertz-sampling-of-plasmonic-fields.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000605270 909CO $$ooai:bib-pubdb1.desy.de:605270$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000605270 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094385$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094385$$aExternal Institute$$b0$$kExtern 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090286$$aExternal Institute$$b1$$kExtern 000605270 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083947$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000605270 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1083947$$aCentre for Free-Electron Laser Science$$b3$$kCFEL 000605270 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082891$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092439$$aExternal Institute$$b5$$kExtern 000605270 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028302$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087060$$aExternal Institute$$b10$$kExtern 000605270 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087060$$aEuropean XFEL$$b10$$kXFEL.EU 000605270 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023238$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023238$$a Hamburg University$$b11 000605270 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008381$$aExternal Institute$$b12$$kExtern 000605270 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1008381$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b12$$kMPG 000605270 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0 000605270 9141_ $$y2024 000605270 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000605270 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24 000605270 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000605270 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24 000605270 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18 000605270 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18 000605270 9201_ $$0I:(DE-H253)FS-ATTO-20170403$$kFS-ATTO$$lAttosecond Science and Technology$$x0 000605270 980__ $$ajournal 000605270 980__ $$aVDB 000605270 980__ $$aI:(DE-H253)FS-ATTO-20170403 000605270 980__ $$aUNRESTRICTED 000605270 9801_ $$aFullTexts 000605270 999C5 $$1Maier S. A.$$2Crossref$$9-- missing cx lookup --$$a10.1007/0-387-37825-1$$y2007 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201205748 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2684-z 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.92.025003 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2012.244 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2508-1 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aax3766 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adom.202001520 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.163901 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsphotonics.0c01065 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nantod.2019.05.006 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/AOP.9.000775 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.3c00920 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.7b00430 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/nanoph-2020-0229 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl101090s 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.243901 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.420683 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-021-00792-0 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-024-45564-w 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2040-8986/aaa114 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6455/ac8032 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.5.000402 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1210713 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-023-32808-w 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.5b06199 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2015.165 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/JOSAB.33.0000A1 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.2c04980 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ppsc.201300256 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adom.202270097 000605270 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6NR00607H