001     605052
005     20250723171629.0
024 7 _ |a 10.1140/epjs/s11734-024-01164-9
|2 doi
024 7 _ |a arXiv:2308.00515
|2 arXiv
024 7 _ |a WOS:001324531100003
|2 WOS
024 7 _ |a altmetric:169261578
|2 altmetric
024 7 _ |a openalex:W4403050980
|2 openalex
037 _ _ |a PUBDB-2024-01310
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a DESY-24-048
|2 DESY
088 _ _ |a arXiv:2308.00515
|2 arXiv
100 1 _ |a Abramowicz, Halina
|0 P:(DE-H253)PIP1003003
|b 0
245 _ _ |a Technical Design Report for the LUXE Experiment
260 _ _ |a Heidelberg
|c 2024
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736240936_1944677
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This Technical Design Report presents a detailed description of all aspects of the LUXE (Laser Und XFEL Experiment), an experiment that will combine the high-quality and high-energy electron beam of the European XFEL with a high-intensity laser, to explore the uncharted terrain of strong-field quantum electrodynamics characterised by both high energy and high intensity, reaching the Schwinger field and beyond. The further implications for the search of physics beyond the Standard Model are also discussed.
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 0
542 _ _ |i 2024-10-01
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-10-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a energy, high
|2 Other
650 _ 7 |a electron, beam
|2 Other
650 _ 7 |a quantum electrodynamics, strong field
|2 Other
650 _ 7 |a laser
|2 Other
650 _ 7 |a new physics
|2 Other
693 _ _ |0 EXP:(DE-H253)LUXE-20220501
|5 EXP:(DE-H253)LUXE-20220501
|e Laser Und XFEL Experiment
|x 0
700 1 _ |a Soto, M. Almanza
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Assmann, Ralph
|0 P:(DE-H253)PIP1017739
|b 2
700 1 _ |a Athanassiadis, Antonios
|0 P:(DE-H253)PIP1103471
|b 3
700 1 _ |a Avoni, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Behnke, Ties
|0 P:(DE-H253)PIP1003157
|b 5
700 1 _ |a Benettoni, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Benhammou, Yan
|0 P:(DE-H253)PIP1027710
|b 7
700 1 _ |a Bhatt, Jayesh
|0 P:(DE-H253)PIP1103864
|b 8
700 1 _ |a Blackburn, Thomas
|0 P:(DE-H253)PIP1094409
|b 9
700 1 _ |a Blanch, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Bonaldo, S.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Boogert, Stewart
|0 P:(DE-H253)PIP1032082
|b 12
700 1 _ |a Borysov, Oleksandr
|0 P:(DE-H253)PIP1027706
|b 13
700 1 _ |a Borysova, Maryna
|0 P:(DE-H253)PIP1086957
|b 14
700 1 _ |a Boudry, Vincent
|0 P:(DE-H253)PIP1002829
|b 15
700 1 _ |a Breton, Dominique
|0 P:(DE-H253)PIP1089339
|b 16
700 1 _ |a Brinkmann, Reinhard
|0 P:(DE-H253)PIP1002844
|b 17
700 1 _ |a Bruschi, Marco
|0 P:(DE-H253)PIP1002788
|b 18
700 1 _ |a Burkart, Florian
|0 P:(DE-H253)PIP1080380
|b 19
700 1 _ |a Buesser, Karsten
|0 P:(DE-H253)PIP1002872
|b 20
700 1 _ |a Cavanagh, Niall
|0 P:(DE-H253)PIP1094411
|b 21
700 1 _ |a Dal Corso, Flavio
|0 P:(DE-H253)PIP1002883
|b 22
700 1 _ |a Decking, Winfried
|0 P:(DE-H253)PIP1002733
|b 23
700 1 _ |a Deniaud, M.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Diner, O.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Dosselli, Umberto
|b 26
700 1 _ |a Elad, Michal
|0 P:(DE-H253)PIP1094892
|b 27
700 1 _ |a Epshteyn, L.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Esperante, D.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Ferber, Torben
|0 P:(DE-H253)PIP1004536
|b 30
700 1 _ |a Firlej, M.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Fiutowski, T.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Fleck, Kyle
|0 P:(DE-H253)PIP1094410
|b 33
700 1 _ |a Fuster-Martinez, N.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Gadow, Karsten
|0 P:(DE-H253)PIP1002528
|b 35
700 1 _ |a Gaede, Frank
|0 P:(DE-H253)PIP1002530
|b 36
700 1 _ |a Gallas, Alexandre
|0 P:(DE-H253)PIP1089426
|b 37
700 1 _ |a García Cabrera, Héctor
|0 P:(DE-H253)PIP1093035
|b 38
700 1 _ |a Gerstmayr, Elias
|0 P:(DE-H253)PIP1087051
|b 39
700 1 _ |a Ghenescu, Veta
|b 40
700 1 _ |a Giorato, Michele
|0 P:(DE-H253)PIP1100386
|b 41
700 1 _ |a Golubeva, Nina
|0 P:(DE-H253)PIP1002576
|b 42
700 1 _ |a Grojean, Christophe
|0 P:(DE-H253)PIP1023796
|b 43
700 1 _ |a Grutta, Pietro
|0 P:(DE-H253)PIP1098994
|b 44
700 1 _ |a Grzelak, Grzegorz
|0 P:(DE-H253)PIP1003381
|b 45
700 1 _ |a Hallford, John Andrew
|0 P:(DE-H253)PIP1091363
|b 46
700 1 _ |a Hartman, Luca
|0 P:(DE-H253)PIP1102420
|b 47
700 1 _ |a Heinemann, Beate
|0 P:(DE-H253)PIP1030369
|b 48
700 1 _ |a Heinzl, Thomas
|0 P:(DE-H253)PIP1097685
|b 49
700 1 _ |a Helary, Louis
|0 P:(DE-H253)PIP1088299
|b 50
700 1 _ |a Hendriks, Luke Jacobus Hendrikus
|0 P:(DE-H253)PIP1105888
|b 51
700 1 _ |a Hoffmann, Marius
|b 52
700 1 _ |a Horn, Alexander
|b 53
700 1 _ |a Huang, Shan
|0 P:(DE-H253)PIP1094891
|b 54
700 1 _ |a Huang, Xinhe
|0 P:(DE-H253)PIP1092157
|b 55
700 1 _ |a Idzik, Marek
|0 P:(DE-H253)PIP1091171
|b 56
700 1 _ |a Irles, Adrián
|0 P:(DE-H253)PIP1024692
|b 57
700 1 _ |a King, Ben
|0 P:(DE-H253)PIP1100286
|b 58
700 1 _ |a Klute, Markus
|0 P:(DE-H253)PIP1102406
|b 59
700 1 _ |a Kropf, Annabel
|0 P:(DE-H253)PIP1096813
|b 60
700 1 _ |a Kroupp, Eyal
|0 P:(DE-H253)PIP1095554
|b 61
700 1 _ |a Lahno, H.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Manghi, F. Lasagni
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Lawhorn, Jay Mathew
|0 P:(DE-H253)PIP1106347
|b 64
700 1 _ |a Levanon, A.
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Levi, Gianluca
|0 P:(DE-H253)PIP1099214
|b 66
700 1 _ |a Levinson, Eli
|0 P:(DE-H253)PIP1108797
|b 67
700 1 _ |a Levy, Itamar
|0 P:(DE-H253)PIP1027707
|b 68
700 1 _ |a Liberman, Adam
|0 P:(DE-H253)PIP1086123
|b 69
700 1 _ |a Liss, Beata
|0 P:(DE-H253)PIP1002007
|b 70
700 1 _ |a List, Benno
|0 P:(DE-H253)PIP1002008
|b 71
700 1 _ |a List, Jenny
|0 P:(DE-H253)PIP1005630
|b 72
700 1 _ |a Lohmann, Wolfgang
|0 P:(DE-H253)PIP1003723
|b 73
700 1 _ |a Maalmi, Jihane
|0 P:(DE-H253)PIP1089342
|b 74
700 1 _ |a Madlener, Thomas
|0 P:(DE-H253)PIP1093201
|b 75
700 1 _ |a Malka, Victor
|0 P:(DE-H253)PIP1031397
|b 76
700 1 _ |a Marsault, Tanguy
|0 P:(DE-H253)PIP1104707
|b 77
700 1 _ |a Mattiazzo, S.
|0 P:(DE-HGF)0
|b 78
700 1 _ |a Meloni, Federico
|0 P:(DE-H253)PIP1083387
|b 79
700 1 _ |a Miron, D.
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Morandin, Mauro
|b 81
700 1 _ |a Moron, Jakub
|0 P:(DE-H253)PIP1091146
|b 82
700 1 _ |a Nanni, J.
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Neagu, A. T.
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Negodin, Evgueni
|0 P:(DE-H253)PIP1000470
|b 85
700 1 _ |a Paccagnella, A.
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Pantano, D.
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Pietruch, D.
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Pomerantz, I.
|0 P:(DE-HGF)0
|b 89
700 1 _ |a Poeschl, Roman
|0 P:(DE-H253)PIP1080600
|b 90
700 1 _ |a Potlog, Mihai
|0 P:(DE-H253)PIP1099137
|b 91
700 1 _ |a Prasad, Rajendra
|0 P:(DE-H253)PIP1089542
|b 92
700 1 _ |a Quishpe, Raquel
|0 P:(DE-H253)PIP1103200
|b 93
700 1 _ |a Ranken, Evan
|0 P:(DE-H253)PIP1101170
|b 94
700 1 _ |a Ringwald, Andreas
|0 P:(DE-H253)PIP1001650
|b 95
700 1 _ |a Roich, A.
|0 P:(DE-HGF)0
|b 96
700 1 _ |a Salgado, F.
|0 P:(DE-HGF)0
|b 97
700 1 _ |a Santra, Arka
|0 P:(DE-H253)PIP1094412
|b 98
700 1 _ |a Sarri, Gianluca
|0 P:(DE-H253)PIP1094414
|b 99
700 1 _ |a Saevert, Alexander
|0 P:(DE-H253)PIP1085480
|b 100
700 1 _ |a Sbrizzi, Antonio
|0 P:(DE-H253)PIP1001665
|b 101
700 1 _ |a Schmitt, Stefan
|0 P:(DE-H253)PIP1001586
|b 102
700 1 _ |a Schulthess, Ivo
|0 P:(DE-H253)PIP1106252
|b 103
700 1 _ |a Schuwalow, Sergej
|0 P:(DE-H253)PIP1006070
|b 104
700 1 _ |a Seipt, Daniel
|0 P:(DE-H253)PIP1096585
|b 105
700 1 _ |a Simi, G.
|0 P:(DE-HGF)0
|b 106
700 1 _ |a Soreq, Yotam
|0 P:(DE-H253)PIP1106804
|b 107
700 1 _ |a Spataro, David
|0 P:(DE-H253)PIP1088317
|b 108
700 1 _ |a Streeter, Matthew
|0 P:(DE-H253)PIP1020832
|b 109
700 1 _ |a Swientek, K.
|0 P:(DE-HGF)0
|b 110
700 1 _ |a Hod, Noam Tal
|0 P:(DE-H253)PIP1094407
|b 111
700 1 _ |a Teter, T.
|0 P:(DE-HGF)0
|b 112
700 1 _ |a Thiebault, Alice Helene
|0 P:(DE-H253)PIP1100969
|b 113
700 1 _ |a Thoden, Daniel
|0 P:(DE-H253)PIP1090948
|b 114
700 1 _ |a Trevisani, Nicolò
|0 P:(DE-H253)PIP1102408
|b 115
700 1 _ |a Urmanov, R.
|0 P:(DE-HGF)0
|b 116
700 1 _ |a Vasiukov, Sergii
|0 P:(DE-H253)PIP1102873
|b 117
700 1 _ |a Walker, Stuart
|0 P:(DE-H253)PIP1095691
|b 118
700 1 _ |a Warren, Matthew
|0 P:(DE-H253)PIP1029799
|b 119
700 1 _ |a Yap, Yee Chinn
|0 P:(DE-H253)PIP1080456
|b 120
700 1 _ |a Zadok, N.
|0 P:(DE-HGF)0
|b 121
700 1 _ |a Zanetti, Marco
|0 P:(DE-H253)PIP1095857
|b 122
700 1 _ |a Zarnecki, Aleksander Filip
|b 123
700 1 _ |a Zbińkowski, P.
|0 P:(DE-HGF)0
|b 124
700 1 _ |a Zembaczynski, Kamil
|0 P:(DE-H253)PIP1102374
|b 125
700 1 _ |a Zepf, Matt
|0 P:(DE-H253)PIP1089310
|b 126
700 1 _ |a Zerwas, Dirk
|0 P:(DE-H253)PIP1089344
|b 127
700 1 _ |a Ziegler, Walter
|0 P:(DE-H253)PIP1012249
|b 128
700 1 _ |a Zuffa, Mirco
|0 P:(DE-H253)PIP1103650
|b 129
700 1 _ |a LUXE Collaboration
|0 P:(DE-HGF)0
|b 130
700 1 _ |a Altarelli, Massimo
|0 P:(DE-H253)PIP1005333
|b 131
|e Editor
700 1 _ |a Jacobs, Ruth Magdalena
|0 P:(DE-H253)PIP1028638
|b 132
|e Corresponding author
|u desy
700 1 _ |a Levy, Aharon
|0 P:(DE-H253)PIP1002090
|b 133
|e Editor
700 1 _ |a Wing, Matthew
|0 P:(DE-H253)PIP1002533
|b 134
|e Editor
700 1 _ |a LUXE Collaboration
|0 P:(DE-HGF)0
|b 135
|e Research Group
700 1 _ |a Heinemann, Beate
|0 P:(DE-H253)PIP1030369
|b 136
|e Contact Person
773 1 8 |a 10.1140/epjs/s11734-024-01164-9
|b Springer Science and Business Media LLC
|d 2024-10-01
|n 10
|p 1709-1974
|3 journal-article
|2 Crossref
|t The European Physical Journal Special Topics
|v 233
|y 2024
|x 1951-6355
773 _ _ |a 10.1140/epjs/s11734-024-01164-9
|0 PERI:(DE-600)2267176-6
|n 10
|p 1709-1974
|t European physical journal special topics
|v 233
|y 2024
|x 1951-6355
787 0 _ |a Abramowicz, H. et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-05632
|r arXiv:2308.00515 ; DESY-24-048
|t Technical Design Report for the LUXE Experiment
856 4 _ |u https://rdcu.be/dYzFo
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:605052
|p OpenAPC_DEAL
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1003003
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017739
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1103471
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1003157
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1027710
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1103864
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1094409
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1032082
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1027706
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1086957
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1002829
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1089339
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1002844
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1002788
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1080380
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1002872
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-H253)PIP1094411
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 22
|6 P:(DE-H253)PIP1002883
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 23
|6 P:(DE-H253)PIP1002733
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 23
|6 P:(DE-H253)PIP1002733
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 27
|6 P:(DE-H253)PIP1094892
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 27
|6 P:(DE-H253)PIP1094892
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 30
|6 P:(DE-H253)PIP1004536
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 33
|6 P:(DE-H253)PIP1094410
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 35
|6 P:(DE-H253)PIP1002528
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 36
|6 P:(DE-H253)PIP1002530
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 37
|6 P:(DE-H253)PIP1089426
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 38
|6 P:(DE-H253)PIP1093035
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 39
|6 P:(DE-H253)PIP1087051
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 41
|6 P:(DE-H253)PIP1100386
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 42
|6 P:(DE-H253)PIP1002576
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 43
|6 P:(DE-H253)PIP1023796
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 44
|6 P:(DE-H253)PIP1098994
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 45
|6 P:(DE-H253)PIP1003381
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 46
|6 P:(DE-H253)PIP1091363
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 47
|6 P:(DE-H253)PIP1102420
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 48
|6 P:(DE-H253)PIP1030369
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 49
|6 P:(DE-H253)PIP1097685
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 50
|6 P:(DE-H253)PIP1088299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 51
|6 P:(DE-H253)PIP1105888
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 54
|6 P:(DE-H253)PIP1094891
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 55
|6 P:(DE-H253)PIP1092157
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 56
|6 P:(DE-H253)PIP1091171
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 57
|6 P:(DE-H253)PIP1024692
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 58
|6 P:(DE-H253)PIP1100286
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 59
|6 P:(DE-H253)PIP1102406
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 60
|6 P:(DE-H253)PIP1096813
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 61
|6 P:(DE-H253)PIP1095554
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 61
|6 P:(DE-H253)PIP1095554
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 64
|6 P:(DE-H253)PIP1106347
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 66
|6 P:(DE-H253)PIP1099214
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 66
|6 P:(DE-H253)PIP1099214
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 67
|6 P:(DE-H253)PIP1108797
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 68
|6 P:(DE-H253)PIP1027707
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 69
|6 P:(DE-H253)PIP1086123
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 69
|6 P:(DE-H253)PIP1086123
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 70
|6 P:(DE-H253)PIP1002007
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 71
|6 P:(DE-H253)PIP1002008
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 72
|6 P:(DE-H253)PIP1005630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 73
|6 P:(DE-H253)PIP1003723
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 74
|6 P:(DE-H253)PIP1089342
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 75
|6 P:(DE-H253)PIP1093201
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 77
|6 P:(DE-H253)PIP1104707
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 79
|6 P:(DE-H253)PIP1083387
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 82
|6 P:(DE-H253)PIP1091146
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 85
|6 P:(DE-H253)PIP1000470
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 90
|6 P:(DE-H253)PIP1080600
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 91
|6 P:(DE-H253)PIP1099137
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 92
|6 P:(DE-H253)PIP1089542
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 92
|6 P:(DE-H253)PIP1089542
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 92
|6 P:(DE-H253)PIP1089542
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 93
|6 P:(DE-H253)PIP1103200
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 94
|6 P:(DE-H253)PIP1101170
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 95
|6 P:(DE-H253)PIP1001650
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 98
|6 P:(DE-H253)PIP1094412
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 99
|6 P:(DE-H253)PIP1094414
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 100
|6 P:(DE-H253)PIP1085480
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 100
|6 P:(DE-H253)PIP1085480
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 101
|6 P:(DE-H253)PIP1001665
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 102
|6 P:(DE-H253)PIP1001586
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 103
|6 P:(DE-H253)PIP1106252
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 104
|6 P:(DE-H253)PIP1006070
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 105
|6 P:(DE-H253)PIP1096585
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 107
|6 P:(DE-H253)PIP1106804
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 108
|6 P:(DE-H253)PIP1088317
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 109
|6 P:(DE-H253)PIP1020832
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 109
|6 P:(DE-H253)PIP1020832
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 111
|6 P:(DE-H253)PIP1094407
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 113
|6 P:(DE-H253)PIP1100969
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 114
|6 P:(DE-H253)PIP1090948
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 115
|6 P:(DE-H253)PIP1102408
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 117
|6 P:(DE-H253)PIP1102873
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 118
|6 P:(DE-H253)PIP1095691
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 119
|6 P:(DE-H253)PIP1029799
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 120
|6 P:(DE-H253)PIP1080456
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 122
|6 P:(DE-H253)PIP1095857
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 125
|6 P:(DE-H253)PIP1102374
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 126
|6 P:(DE-H253)PIP1089310
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 126
|6 P:(DE-H253)PIP1089310
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 127
|6 P:(DE-H253)PIP1089344
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 128
|6 P:(DE-H253)PIP1012249
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 129
|6 P:(DE-H253)PIP1103650
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 131
|6 P:(DE-H253)PIP1005333
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 131
|6 P:(DE-H253)PIP1005333
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 132
|6 P:(DE-H253)PIP1028638
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 133
|6 P:(DE-H253)PIP1002090
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 134
|6 P:(DE-H253)PIP1002533
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 136
|6 P:(DE-H253)PIP1030369
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J-SPEC TOP : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
999 C 5 |a 10.1103/PhysRevD.60.092004
|1 C Bamber
|9 -- missing cx lookup --
|2 Crossref
|u C. Bamber et al., Studies of nonlinear QED in collisions of 46.6-GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999)
|t Phys. Rev. D
|v 60
|y 1999
999 C 5 |a 10.1103/PhysRevA.79.063407
|1 C Harvey
|9 -- missing cx lookup --
|2 Crossref
|u C. Harvey, T. Heinzl, A. Ilderton, Signatures of high-intensity Compton scattering. Phys. Rev. A 79, 063407 (2009). arXiv:0903.4151 [hep-ph]
|t Phys. Rev. A
|v 79
|y 2009
999 C 5 |a 10.1103/PhysRevLett.127.052302
|1 J Adam
|9 -- missing cx lookup --
|2 Crossref
|u J. Adam et al., Measurement of $$e^+e^-$$ momentum and angular distributions from linearly polarized photon collisions. Phys. Rev. Lett. 127, 052302 (2021). https://doi.org/10.1103/PhysRevLett.127.052302. arXiv:1910.12400 [nucl-ex]
|t Phys. Rev. Lett.
|v 127
|y 2021
999 C 5 |2 Crossref
|u T.G. Blackburn, https://github.com/tgblackburn/ptarmigan
999 C 5 |a 10.1088/1367-2630/ac1bf6
|1 TG Blackburn
|9 -- missing cx lookup --
|2 Crossref
|u T.G. Blackburn, A.J. MacLeod, B. King, From local to nonlocal: higher fidelity simulations of photon emission in intense laser pulses. New J. Phys. 23, 085008 (2021). https://doi.org/10.1088/1367-2630/ac1bf6. arXiv:2103.06673 [hep-ph]
|t New J. Phys.
|v 23
|y 2021
999 C 5 |a 10.1140/epjc/s10052-021-09955-3
|9 -- missing cx lookup --
|1 TG Blackburn
|p 44 -
|2 Crossref
|u T.G. Blackburn, B. King, Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses. Eur. Phys. J. C 82, 44 (2022). https://doi.org/10.1140/epjc/s10052-021-09955-3. arXiv:2108.10883 [hep-ph]
|t Eur. Phys. J. C
|v 82
|y 2022
999 C 5 |2 Crossref
|u M. McCullough, Lectures on Physics Beyond the Standard Model, 6th Tri-Institute Summer School on Elementary Particles (2018)
999 C 5 |2 Crossref
|u R.K. Ellis et al., Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020 (2019). arXiv:1910.11775 [hep-ex]
999 C 5 |a 10.1103/PhysRevLett.38.1440
|9 -- missing cx lookup --
|1 RD Peccei
|p 1440 -
|2 Crossref
|u R.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.1103/PhysRevLett.38.1440
|t Phys. Rev. Lett.
|v 38
|y 1977
999 C 5 |a 10.1103/PhysRevD.16.1791
|9 -- missing cx lookup --
|1 RD Peccei
|p 1791 -
|2 Crossref
|u R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977). https://doi.org/10.1103/PhysRevD.16.1791
|t Phys. Rev. D
|v 16
|y 1977
999 C 5 |a 10.1103/PhysRevLett.40.279
|9 -- missing cx lookup --
|1 F Wilczek
|p 279 -
|2 Crossref
|u F. Wilczek, Problem of strong $$P$$ and $$T$$ invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978). https://doi.org/10.1103/PhysRevLett.40.279
|t Phys. Rev. Lett.
|v 40
|y 1978
999 C 5 |a 10.1103/PhysRevLett.40.223
|9 -- missing cx lookup --
|1 S Weinberg
|p 223 -
|2 Crossref
|u S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223 (1978). https://doi.org/10.1103/PhysRevLett.40.223
|t Phys. Rev. Lett.
|v 40
|y 1978
999 C 5 |a 10.1103/PhysRevD.106.115034
|1 Z Bai
|9 -- missing cx lookup --
|2 Crossref
|u Z. Bai et al., New physics searches with an optical dump at LUXE. Phys. Rev. D 106, 115034 (2022). https://doi.org/10.1103/PhysRevD.106.115034. arXiv:2107.13554 [hep-ph]
|t Phys. Rev. D
|v 106
|y 2022
999 C 5 |a 10.1140/epjs/s11734-021-00249-z
|9 -- missing cx lookup --
|2 Crossref
|u H. Abramowicz et al., Conceptual design report for the LUXE experiment. Eur. Phys. J. ST 230, 2445 (2021). https://doi.org/10.1140/epjs/s11734-021-00249-z. arXiv: 2102.02032 [hep-ex]
999 C 5 |a 10.1103/PhysRevLett.76.3116
|9 -- missing cx lookup --
|1 C Bula
|p 3116 -
|2 Crossref
|u C. Bula et al., Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996)
|t Phys. Rev. Lett.
|v 76
|y 1996
999 C 5 |a 10.1103/PhysRevLett.79.1626
|9 -- missing cx lookup --
|1 DL Burke
|p 1626 -
|2 Crossref
|u D.L. Burke et al., Positron production in multi-photon light by light scattering. Phys. Rev. Lett. 79, 1626 (1997)
|t Phys. Rev. Lett.
|v 79
|y 1997
999 C 5 |1 JM Cole
|y 2018
|2 Crossref
|u J.M. Cole et al., Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018). arXiv: 1707.06821 [physics.plasm-ph]
999 C 5 |1 K Poder
|y 2018
|2 Crossref
|u K. Poder et al., Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018). arXiv:1709.01861 [physics.plasm-ph]
999 C 5 |a 10.1364/HILAS.2022.HF4B.6
|9 -- missing cx lookup --
|2 Crossref
|u Z. Chen et al., Preparation of Strong-field QED Experiments at FACET-II. Optica High-brightness Sources and Light-driven Interactions Congress 2022, Optica Publishing Group, 2022 HF4B.6. https://opg.optica.org/abstract.cfm?URI=HILAS-2022-HF4B.6
999 C 5 |1 ICE Turcu
|y 2016
|2 Crossref
|u I.C.E. Turcu et al., High field physics and QED experiments at ELI-NP. Rom. Rep. Phys. 68, S145 (2016)
999 C 5 |2 Crossref
|u J. Müller et al., Large-scale optical synchronization system of the European XFEL, in Proc. 29th Linear Accelerator Conference (LINAC’18), Beijing, 16–21 September 2018, Geneva (JACoW Publishing, 2019) p. 253 http://jacow.org/linac2018/papers/mopo121.pdf
999 C 5 |2 Crossref
|u S. Schulz et al., Few Femtosecond Facility-Wide-Synchronization of the European XFEL, in Proceedings of the 39 the International Free-Electron Laser Conference (Hamburg) (2019). https://fel2019.vrws.de/papers/web04.pdf
999 C 5 |a 10.1088/1748-0221/18/05/P05007
|9 -- missing cx lookup --
|1 A Santra
|p P05007 -
|2 Crossref
|u A. Santra, N.T. Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. J. Instrum. 18, P05007 (2023)
|t J. Instrum.
|v 18
|y 2023
999 C 5 |a 10.1038/s41598-020-66832-x
|9 -- missing cx lookup --
|1 K Fleck
|p 9894 -
|2 Crossref
|u K. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020)
|t Sci. Rep.
|v 10
|y 2020
999 C 5 |a 10.1103/PhysRevResearch.5.043046
|1 N Cavanagh
|9 -- missing cx lookup --
|2 Crossref
|u N. Cavanagh et al., Experimental characterization of a single-shot spectrometer for high-flux, GeV-scale gamma-ray beams. Phys. Rev. Res. 5, 043046 (2023). https://doi.org/10.1103/PhysRevResearch.5.043046
|t Phys. Rev. Res.
|v 5
|y 2023
999 C 5 |a 10.1016/S0370-2693(01)00496-8
|9 -- missing cx lookup --
|1 A Ringwald
|p 107 -
|2 Crossref
|u A. Ringwald, Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B 510, 107 (2001). arXiv:hep-ph/0103185
|t Phys. Lett. B
|v 510
|y 2001
999 C 5 |a 10.1103/PhysRev.82.664
|9 -- missing cx lookup --
|1 J Schwinger
|p 664 -
|2 Crossref
|u J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)
|t Phys. Rev.
|v 82
|y 1951
999 C 5 |a 10.1103/physreva.83.052122
|9 -- missing cx lookup --
|2 Crossref
|u D. Hanneke, S. Fogwell Hoogerheide, G. Gabrielse et al., Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys. Rev. A 83, 052122 (2011). https://doi.org/10.1103/physreva.83.052122
999 C 5 |a 10.3390/atoms7010028
|9 -- missing cx lookup --
|1 T Aoyama
|p 28 -
|2 Crossref
|u T. Aoyama, T. Kinoshita, M. Nio, Theory of the anomalous magnetic moment of the electron. Atoms 7, 28 (2019). https://doi.org/10.3390/atoms7010028
|t Atoms
|v 7
|y 2019
999 C 5 |a 10.1016/j.physrep.2023.01.003
|9 -- missing cx lookup --
|1 A Fedotov
|p 1 -
|2 Crossref
|u A. Fedotov et al., Advances in QED with intense background fields. Phys. Rep. 1010, 1 (2023). https://doi.org/10.1016/j.physrep.2023.01.003. arXiv:2203.00019 [hep-ph]
|t Phys. Rep.
|v 1010
|y 2023
999 C 5 |a 10.1016/j.physrep.2009.10.004
|9 -- missing cx lookup --
|1 R Ruffini
|p 1 -
|2 Crossref
|u R. Ruffini, G. Vereshchagin, S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1 (2010). https://doi.org/10.1016/j.physrep.2009.10.004. arXiv:0910.0974 [astro-ph.HE]
|t Phys. Rep.
|v 487
|y 2010
999 C 5 |1 AI Nikishov
|y 1962
|2 Crossref
|u A.I. Nikishov, Absorption of high-energy photons in the universe. Sov. Phys. JETP 14, 393 (1962)
999 C 5 |a 10.1038/30410
|9 -- missing cx lookup --
|1 C Kouveliotou
|p 235 -
|2 Crossref
|u C. Kouveliotou et al., An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235 (1998)
|t Nature
|v 393
|y 1998
999 C 5 |a 10.1088/0034-4885/69/9/r03
|9 -- missing cx lookup --
|1 AK Harding
|p 2631 -
|2 Crossref
|u A.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631 (2006). https://doi.org/10.1088/0034-4885/69/9/r03
|t Rep. Prog. Phys.
|v 69
|y 2006
999 C 5 |a 10.1088/0034-4885/78/11/116901
|1 R Turolla
|9 -- missing cx lookup --
|2 Crossref
|u R. Turolla, S. Zane, A. Watts, Magnetars: the physics behind observations. A review. Rep. Prog. Phys 78, 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901. arXiv:1507.02924 [astro-ph.HE]
|t Rep. Prog. Phys
|v 78
|y 2015
999 C 5 |a 10.1103/PhysRevLett.122.190404
|1 V Yakimenko
|9 -- missing cx lookup --
|2 Crossref
|u V. Yakimenko et al., Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122, 190404 (2019). https://doi.org/10.1103/PhysRevLett.122.190404
|t Phys. Rev. Lett.
|v 122
|y 2019
999 C 5 |2 Crossref
|u P.H. Bucksbaum et al., Probing QED Cascades and Pair Plasmas in Laboratory Experiments. LoI to Cosmic Frontier (2020). https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1-001.pdf
999 C 5 |a 10.1103/PhysRevLett.89.061802
|1 SZ Akhmadaliev
|9 -- missing cx lookup --
|2 Crossref
|u S.Z. Akhmadaliev et al., Experimental investigation of high-energy photon splitting in atomic fields. Phys. Rev. Lett. 89, 061802 (2002). https://doi.org/10.1103/PhysRevLett.89.061802. arXiv:hep-ex/0111084
|t Phys. Rev. Lett.
|v 89
|y 2002
999 C 5 |a 10.1080/0950034042000275360
|9 -- missing cx lookup --
|1 MY Ivanov
|p 165 -
|2 Crossref
|u M.Y. Ivanov, M. Spanner, O. Smirnova, Anatomy of strong field ionization. J. Mod. Opt. 52, 165 (2005). https://doi.org/10.1080/0950034042000275360
|t J. Mod. Opt.
|v 52
|y 2005
999 C 5 |a 10.1103/PhysRevD.99.036008
|1 A Hartin
|9 -- missing cx lookup --
|2 Crossref
|u A. Hartin, A. Ringwald, N. Tapia, Measuring the boiling point of the vacuum of quantum electrodynamics. Phys. Rev. D 99, 036008 (2019). arXiv:1807.10670 [hep-ph]
|t Phys. Rev. D
|v 99
|y 2019
999 C 5 |a 10.1103/PhysRevLett.130.071601
|1 C Nielsen
|9 -- missing cx lookup --
|2 Crossref
|u C. Nielsen et al., Precision measurement of trident production in strong electromagnetic fields. Phys. Rev. Lett. 130, 071601 (2023)
|t Phys. Rev. Lett.
|v 130
|y 2023
999 C 5 |a 10.1103/PhysRevA.102.063110
|1 T Heinzl
|9 -- missing cx lookup --
|2 Crossref
|u T. Heinzl, B. King, A. Macleod, The locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A 102, 063110 (2020). https://doi.org/10.1103/PhysRevA.102.063110. arXiv:2004.13035 [hep-ph]
|t Phys. Rev. A
|v 102
|y 2020
999 C 5 |a 10.1109/TNS.2006.869826
|9 -- missing cx lookup --
|1 J Allison
|p 270 -
|2 Crossref
|u J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006)
|t IEEE Trans. Nucl. Sci.
|v 53
|y 2006
999 C 5 |a 10.1016/j.nima.2016.06.125
|9 -- missing cx lookup --
|1 J Allison
|p 186 -
|2 Crossref
|u J. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016)
|t Nucl. Instrum. Methods A
|v 835
|y 2016
999 C 5 |a 10.1109/NSS/MIC42101.2019.9059613
|9 -- missing cx lookup --
|2 Crossref
|u A. Irles, Testing highly integrated components for the technological prototype of the CALICE SiW-ECAL, in 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), p. 1 (2019). arXiv:2004.12792 [physics.ins-det]
999 C 5 |a 10.1103/RevModPhys.46.815
|9 -- missing cx lookup --
|1 Y-S Tsai
|p 815 -
|2 Crossref
|u Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815 (1974). https://doi.org/10.1103/RevModPhys.46.815
|t Rev. Mod. Phys.
|v 46
|y 1974
999 C 5 |a 10.1364/OE.386112
|9 -- missing cx lookup --
|1 V Leroux
|p 8257 -
|2 Crossref
|u V. Leroux, T. Eichner, A.R. Maier, Description of spatio-temporal couplings from heat-induced compressor grating deformation. Opt. Express 28, 8257 (2020). https://doi.org/10.1364/OE.386112
|t Opt. Express
|v 28
|y 2020
999 C 5 |2 Crossref
|u A.L. Garcia et al., ReLaX: the HiBEF high-intensity short-pulse laser driver for relativistic laser-matter interaction and strong-field science at the HED instrument at EuXFEL. High Power laser Science and Engineering (2021). https://doi.org/accepted
999 C 5 |a 10.1016/0030-4018(85)90151-8
|9 -- missing cx lookup --
|2 Crossref
|u D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447 (1985) [Erratum: Opt. Commun. 56, 219 (1985)]
999 C 5 |a 10.1063/1.5142833
|1 B Steffen
|9 -- missing cx lookup --
|2 Crossref
|u B. Steffen et al., Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Rev. Sci. Instrum. 91, 045123 (2020). https://doi.org/10.1063/1.5142833
|t Rev. Sci. Instrum.
|v 91
|y 2020
999 C 5 |a 10.1088/2040-8986/abad08
|1 SW Jolly
|9 -- missing cx lookup --
|2 Crossref
|u S.W. Jolly, O. Gobert, F. Quéré, Spatio-temporal characterization of ultrashort laser beams: a tutorial. J. Opt. 22, 103501 (2020)
|t J. Opt.
|v 22
|y 2020
999 C 5 |2 Crossref
|u The Distributed Object-Oriented Control System Framework. https://doocs-web.desy.de/index.html
999 C 5 |a 10.1088/0954-3899/41/8/087002
|1 B Abelev
|9 -- missing cx lookup --
|2 Crossref
|u B. Abelev et al., Technical design report for the upgrade of the ALICE Inner Tracking System. J. Phys. G 41, 087002 (2014)
|t J. Phys. G
|v 41
|y 2014
999 C 5 |a 10.1016/j.nima.2016.05.016
|9 -- missing cx lookup --
|2 Crossref
|u G. Aglieri Rinella, The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System. Nucl. Inst. Methods A. 845, 583 (2017). Proceedings of the Vienna Conference on Instrumentation 2016. https://doi.org/10.1016/j.nima.2016.05.016
999 C 5 |2 Crossref
|u TowerJazz, (2022). https://towersemi.com/
999 C 5 |a 10.1088/1748-0221/3/08/s08002
|9 -- missing cx lookup --
|1 K Aamodt
|p S08002 -
|2 Crossref
|u K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008). https://doi.org/10.1088/1748-0221/3/08/s08002
|t JINST
|v 3
|y 2008
999 C 5 |a 10.1115/1.3662552
|9 -- missing cx lookup --
|1 RE Kalman
|p 35 -
|2 Crossref
|u R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35 (1960)
|t Trans. ASME-J. Basic Eng.
|v 82
|y 1960
999 C 5 |a 10.1088/1361-6633/aab064
|1 M Garcia-Sciveres
|9 -- missing cx lookup --
|2 Crossref
|u M. Garcia-Sciveres, N. Wermes, A review of advances in pixel detectors for experiments with high rate and radiation. Rep. Prog. Phys. 81, 066101 (2018). https://doi.org/10.1088/1361-6633/aab064. arXiv:1705.10150 [physics.ins-det]
|t Rep. Prog. Phys.
|v 81
|y 2018
999 C 5 |a 10.1016/j.nima.2015.09.057
|9 -- missing cx lookup --
|2 Crossref
|u M. Mager, ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade. Nucl. Instr. Methods A 824, 434 (2016). Frontier detectors for frontier physics: proceedings of the 13th Pisa meeting on advanced detectors. https://doi.org/10.1016/j.nima.2015.09.057
999 C 5 |a 10.1016/j.nima.2015.02.063
|9 -- missing cx lookup --
|1 P Yang
|p 61 -
|2 Crossref
|u P. Yang et al., Low-power priority address-encoder and reset-decoder data-driven readout for monolithic active pixel sensors for tracker system. Nucl. Instr. Methods A 785, 61 (2015). https://doi.org/10.1016/j.nima.2015.02.063
|t Nucl. Instr. Methods A
|v 785
|y 2015
999 C 5 |a 10.1016/j.nima.2013.03.017
|9 -- missing cx lookup --
|2 Crossref
|u S. Senyukov et al., Charged particle detection performances of CMOS pixel sensors produced in a 0.18 $$\mu$$m process with a high resistivity epitaxial layer. Nucl. Instr. Methods A 730, 115 (2013). Proceedings of the 9th international conference on radiation effects on semiconductor materials detectors and devices. https://doi.org/10.1016/j.nima.2013.03.017
999 C 5 |a 10.1016/j.nima.2020.164859
|9 -- missing cx lookup --
|2 Crossref
|u G. Aglieri Rinella et al., Charge collection properties of TowerJazz 180 nm CMOS Pixel Sensors in dependence of pixel geometries and bias parameters, studied using a dedicated test-vehicle: the Investigator chip. Nucl. Instr. Methods A 988, 164859 (2021). https://doi.org/10.1016/j.nima.2020.164859
999 C 5 |a 10.1016/j.nima.2019.02.049
|9 -- missing cx lookup --
|1 D Dannheim
|p 187 -
|2 Crossref
|u D. Dannheim et al., Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer. Nucl. Instr. Methods A 927, 187 (2019). https://doi.org/10.1016/j.nima.2019.02.049
|t Nucl. Instr. Methods A
|v 927
|y 2019
999 C 5 |2 Crossref
|u Expression of Interest for an ALICE ITS Upgrade in LS3 (2018). http://cds.cern.ch/record/2644611
999 C 5 |a 10.1088/1748-0221/11/12/c12023
|9 -- missing cx lookup --
|1 J Anderson
|p C12023 -
|2 Crossref
|u J. Anderson et al., FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework. JINST 11, C12023 (2016). https://doi.org/10.1088/1748-0221/11/12/c12023
|t JINST
|v 11
|y 2016
999 C 5 |a 10.1051/epjconf/202024501037
|1 W Panduro Vazquez
|9 -- missing cx lookup --
|2 Crossref
|u W. Panduro Vazquez, FELIX: the new detector interface for ATLAS. Eur. Phys. J. Web Conf 245, 01037 (2020). https://doi.org/10.1051/epjconf/202024501037
|t Eur. Phys. J. Web Conf
|v 245
|y 2020
999 C 5 |a 10.1109/NSS/MIC42101.2019.9060037
|9 -- missing cx lookup --
|2 Crossref
|u M. Trovato, FELIX: The New Readout System for the ATLAS Detector, in 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), p. 1 (2019)
999 C 5 |a 10.1109/TNS.2019.2904660
|9 -- missing cx lookup --
|1 A Borga
|p 993 -
|2 Crossref
|u A. Borga et al., FELIX-based readout of the single-phase ProtoDUNE detector. IEEE Trans. Nucl. Sci. 66, 993 (2019). https://doi.org/10.1109/TNS.2019.2904660
|t IEEE Trans. Nucl. Sci.
|v 66
|y 2019
999 C 5 |2 Crossref
|u CAEN EASY3000, Crate for EASY3000 Power Supply System for Hostile Area. https://www.caen.it/products/easy3000/
999 C 5 |a 10.1016/j.nuclphysa.2018.10.075
|9 -- missing cx lookup --
|2 Crossref
|u Y. Kim, The detector development and physics program in sPHENIX experiment at RHIC. Nucl. Phys. A 982, 955 (2019). The 27th international conference on ultrarelativistic nucleus-nucleus collisions: Quark Matter 2018. https://doi.org/10.1016/j.nuclphysa.2018.10.075
999 C 5 |a 10.1051/epjconf/201817407002
|9 -- missing cx lookup --
|1 G De Robertis
|p 07002 -
|2 Crossref
|u G. De Robertis et al., A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment. Eur. Phys. J. Web Conf. 174, 07002 (2018). https://doi.org/10.1051/epjconf/201817407002
|t Eur. Phys. J. Web Conf.
|v 174
|y 2018
999 C 5 |2 Crossref
|u (2021). https://ww1.microchip.com/downloads/en/DeviceDoc/MIC2915x-30x-50x-75x-High-Current-Low-Dropout-Regulators-DS20005685B.pdf
999 C 5 |2 Crossref
|u ALPIDE Operations Manual (2016). http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-operations-manual-version-0_3.pdf
999 C 5 |a 10.1088/1748-0221/18/05/P05007
|9 -- missing cx lookup --
|2 Crossref
|u A. Santra, N. Tal Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. JINST 18, P05007 (2023). https://doi.org/10.1088/1748-0221/18/05/P05007. arXiv: 2209.03457 [physics.ins-det]
999 C 5 |a 10.1016/S0168-9002(03)01368-8
|9 -- missing cx lookup --
|1 S Agostinelli
|p 250 -
|2 Crossref
|u S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instr. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
|t Nucl. Instr. Methods A
|v 506
|y 2003
999 C 5 |2 Crossref
|u H. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022)
999 C 5 |a 10.1016/j.nima.2018.06.020
|9 -- missing cx lookup --
|1 S Spannagel
|p 164 -
|2 Crossref
|u S. Spannagel et al., Allpix2: a modular simulation framework for silicon detectors. Nucl. Instr. Methods A 901, 164 (2018). https://doi.org/10.1016/j.nima.2018.06.020
|t Nucl. Instr. Methods A
|v 901
|y 2018
999 C 5 |a 10.1016/j.nima.2019.162882
|1 M Šuljić
|9 -- missing cx lookup --
|2 Crossref
|u M. Šuljić, P. Camerini, J.W. van Hoorne, Monte Carlo simulation of charge collection processes in Monolithic Active Pixel Sensors for the ALICE ITS upgrade. Nucl. Instr. Methods A 950, 162882 (2020). https://doi.org/10.1016/j.nima.2019.162882
|t Nucl. Instr. Methods A
|v 950
|y 2020
999 C 5 |a 10.1088/1748-0221/9/09/P09009
|9 -- missing cx lookup --
|2 Crossref
|u The ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector. JINST 9, P09009 (2014). https://doi.org/10.1088/1748-0221/9/09/P09009
999 C 5 |a 10.1016/0168-9002(90)91835-Y
|9 -- missing cx lookup --
|1 P Billoir
|p 219 -
|2 Crossref
|u P. Billoir, S. Qian, Simultaneous pattern recognition and track fitting by the Kalman filtering method. Nucl. Instr. Methods A 294, 219 (1990). https://doi.org/10.1016/0168-9002(90)91835-Y
|t Nucl. Instr. Methods A
|v 294
|y 1990
999 C 5 |a 10.1016/j.nima.2020.163784
|9 -- missing cx lookup --
|2 Crossref
|u D. Dannheim et al., Combining TCAD and Monte Carlo Methods to simulate CMOS pixel sensors with a small collection electrode using the Allpix$$^2$$ squared framework. Nucl. Instr. Methods A 964, 163784 (2020). https://doi.org/10.1016/j.nima.2020.163784. arXiv: 2002.12602 [physics.ins-det]
999 C 5 |a 10.1088/1748-0221/14/10/p10033
|9 -- missing cx lookup --
|1 Y Liu
|p P10033 -
|2 Crossref
|u Y. Liu et al., EUDAQ2—a flexible data acquisition software framework for common test beams. JINST 14, P10033 (2019). https://doi.org/10.1088/1748-0221/14/10/p10033
|t JINST
|v 14
|y 2019
999 C 5 |a 10.1088/1748-0221/14/09/p09019
|9 -- missing cx lookup --
|1 P Baesso
|p P09019 -
|2 Crossref
|u P. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/p09019
|t JINST
|v 14
|y 2019
999 C 5 |a 10.1109/TNS.2019.2945234
|9 -- missing cx lookup --
|1 S Kushpil
|p 2319 -
|2 Crossref
|u S. Kushpil, F. Krizek, A. Isakov, Recent results from beam tests of the ALPIDE Pixel chip for the upgrade of the ALICE Inner Tracker. IEEE Trans. Nucl. Sci. 66, 2319 (2019). https://doi.org/10.1109/TNS.2019.2945234
|t IEEE Trans. Nucl. Sci.
|v 66
|y 2019
999 C 5 |2 Crossref
|u H. Abramowicz et al., Forward instrumentation for ILC detectors. JINST 5, P12002 (2010). arXiv: 1009.2433 [physics.ins-det]
999 C 5 |2 Crossref
|u H. Abramowicz et al., Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam. Eur. Phys. J. C 79, 579 (2019). arXiv:1812.11426 [physics.ins-det]
999 C 5 |a 10.1016/j.nima.2019.162969
|9 -- missing cx lookup --
|2 Crossref
|u K. Kawagoe et al., Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. Nucl. Instr. Methods A 950, 162969 (2020). https://doi.org/10.1016/j.nima.2019.162969. arXiv:1902.00110 [physics.ins-det]
999 C 5 |2 Crossref
|u A. Hartin, Private communication
999 C 5 |2 Crossref
|u J. Moron, FLAME SoC readout ASIC for electromagnetic calorimeter, September 19–23 (2022). https://indico.cern.ch/event/1127562/contributions/4904506/attachments/2512388/4318796/moron_TWEPP_2022_09_21.pdf
999 C 5 |2 Crossref
|u M. Idzik, The FLAME and FLAXE ASICs, June 12–16 (2023). https://agenda.infn.it/event/36206/contributions/202659/attachments/106949/150868/idzik_FEE_2023_06_FLAME.pdf
999 C 5 |a 10.1088/1748-0221/15/01/P01038
|9 -- missing cx lookup --
|2 Crossref
|u P. Ahlburg et al., EUDAQ—a data acquisition software framework for common beam telescopes. JINST 15, P01038 (2020). https://doi.org/10.1088/1748-0221/15/01/P01038. arXiv:1909.13725 [physics.ins-det]
999 C 5 |a 10.1088/1748-0221/6/12/C12040
|9 -- missing cx lookup --
|1 S Callier
|p C12040 -
|2 Crossref
|u S. Callier et al., SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC. JINST 6, C12040 (2011). https://doi.org/10.1088/1748-0221/6/12/C12040
|t JINST
|v 6
|y 2011
999 C 5 |2 Crossref
|u O. Novgorodova, Characterisation and Application of Radiation Hard Sensors for LHC and ILC. PhD thesis: Brandenburg Tech. U. (2013)
999 C 5 |2 Crossref
|u M. Shchedrolosiev, Optimization of an electromagnetic calorimeter for the LUXE experiment, Taras Shevchenko National University of Kyiv, Faculty of Nuclear Physics (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55608/main_eng.pdf
999 C 5 |2 Crossref
|u S. Takada et al., Characteristic study of silicon sensor for ILD ECAL (2015). arXiv:1503.09050 [hep-ex]
999 C 5 |2 Crossref
|u H. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022)
999 C 5 |a 10.1063/5.0090514
|1 E Kroupp
|9 -- missing cx lookup --
|2 Crossref
|u E. Kroupp et al., Commissioning and first results from the new 2 Õ 100 TW laser at the WIS. Matter Radiat. Extremes 7, 044401 (2022). https://doi.org/10.1063/5.0090514
|t Matter Radiat. Extremes
|v 7
|y 2022
999 C 5 |a 10.1016/j.nima.2021.165555
|9 -- missing cx lookup --
|2 Crossref
|u M. Berggren et al., Kinematic edge detection using finite impulse response filters (2020). arXiv:2012.11415 [hep-ex]
999 C 5 |2 Crossref
|u Basler AG, Basler Area Scan Camera Range (2021). https://www.baslerweb.com/en/products/cameras/area-scan-cameras/
999 C 5 |2 Crossref
|u Edmund Optics, 543 nm CWL, 50 mm Dia, 22 nm Bandwidth, OD 6 Fluorescence Filter (2021). https://www.edmundoptics.com/p/543nm-cwl-50mm-dia-22nm-bandwidth-od-6-fluorescence-filter/21586/
999 C 5 |2 Crossref
|u Basler AG, Basler acA1920-40gm, Camera Specification, Document Number: BD000940, version v01 (2021). https://www.baslerweb.com/fp-1489067421/media/downloads/documents/emva_data/BD00094001_Basler_acA1920-40gm_EMVA_Standard_1288.pdf
999 C 5 |2 Crossref
|u Basler AG, Basler acA4096-11gm, Camera Specification, Document Number: BD001167, version v01 (2021). https://www.baslerweb.com/fp-1520251824/media/downloads/documents/emva_data/BD00116701_Basler_acA4096-11gm_EMVA_Standard_1288.pdf
999 C 5 |2 Crossref
|u F. Keeble, Measurement of the electron energy distribution at AWAKE, PhD thesis: University College London (2019)
999 C 5 |a 10.1038/s41586-018-0485-4
|9 -- missing cx lookup --
|1 E Adli
|p 363 -
|2 Crossref
|u E. Adli et al., Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363 (2018). https://doi.org/10.1038/s41586-018-0485-4
|t Nature
|v 561
|y 2018
999 C 5 |2 Crossref
|u D. Lipka et al., Dark Current Monitor for the European XFEL, in 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Hamburg (Germany), 16 May 2011–18 May 2011, JACoW (2011). https://bib-pubdb1.desy.de/record/90975
999 C 5 |2 Crossref
|u Edmund Optics, Green M34.0 x 0.50 High Performance Machine Vision Filter (2021). https://www.edmundoptics.com/p/green-m340-x-050-machine-vision-filter/32224/
999 C 5 |2 Crossref
|u MCIO Optonix, DRZ Screens (2021). http://www.mcio.com/Products/drz-screens.aspx
999 C 5 |a 10.1088/0960-1317/19/1/015014
|1 ID Jung
|9 -- missing cx lookup --
|2 Crossref
|u I.D. Jung et al., Flexible Gd2O2S: Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors. J. Micromech. Microeng. 19, 015014 (2008). https://doi.org/10.1088/0960-1317/19/1/015014
|t J. Micromech. Microeng.
|v 19
|y 2008
999 C 5 |2 Crossref
|u Mitsubishi Chemical (2021). www.m-chemical.co.jp/en/products/departments/mcc/ledmat/product/1201037_7550.html
999 C 5 |a 10.1016/S0022-2313(96)00330-4
|9 -- missing cx lookup --
|1 R Morlotti
|p 772 -
|2 Crossref
|u R. Morlotti et al., Intrinsic conversion efficiency of X-rays to light in Gd2O2S: Tb3+ powder phosphors. J. Lumin. 72–74, 772 (1997). https://doi.org/10.1016/S0022-2313(96)00330-4
|t J. Lumin.
|v 72–74
|y 1997
999 C 5 |2 Crossref
|u El-Mul Technologies Ltd., ScintiMax Data Sheet
999 C 5 |2 Crossref
|u Phosphor Technology, X-Ray Phosphors (2021). https://www.phosphor-technology.com/x-ray-phosphors/
999 C 5 |a 10.1016/j.nima.2019.05.067
|9 -- missing cx lookup --
|2 Crossref
|u J. Bauche et al., A magnetic spectrometer to measure electron bunches accelerated at AWAKE. Nucl. Instr. Methods A 940, 103 (2019). https://doi.org/10.1016/j.nima.2019.05.067
999 C 5 |2 Crossref
|u Basler AG, Basler Product Documentation, acA1920-40gm (2021). https://docs.baslerweb.com/aca1920-40gm
999 C 5 |2 Crossref
|u Basler AG, Basler Product Documentation, acA4096-11gm (2021). https://docs.baslerweb.com/aca4096-11gm
999 C 5 |2 Crossref
|u Edmund Optics, Edmund 75mm DG Series Fixed Focal Length Lens (2021). https://www.edmundoptics.co.uk/p/75mm-dg-series-fixed-focal-length-lens/11371/
999 C 5 |2 Crossref
|u Basler AG, Basler Lens C11-5020-12M-P f50mm-Lens (2021). https://docs.baslerweb.com/c11-5020-12m-p
999 C 5 |2 Crossref
|u Edmund Optics, 0.5 OD 25mm Diameter Reflective ND Filter (2022). https://www.https://www.edmundoptics.com/p/05-od-25mm-diameter-reflective-nd-filter/1932/
999 C 5 |2 Crossref
|u Basler AG (2022). https://www.baslerweb.com/en/products/software/basler-pylon-camera-software-suite/
999 C 5 |2 Crossref
|u Basler AG (2021). docs.baslerweb.com/io-timing-characteristics-(ace-ace-2-boost)
999 C 5 |2 Crossref
|u Advanced Illumination/Edmund Optics, 100 x 100 mm, 520 nm, LED Backlight (2022). https://www.edmundoptics.de/p/100-x-100mm-520nm-led-backlight/21339/
999 C 5 |a 10.1016/j.fusengdes.2017.03.167
|9 -- missing cx lookup --
|2 Crossref
|u A. Huber et al., Response of the imaging cameras to hard radiation during JET operation. Fusion Eng. Design 123, 669 (2017). Proceedings of the 29th symposium on fusion technology (SOFT-29) Prague, September 5–9, 2016. https://doi.org/10.1016/j.fusengdes.2017.03.167
999 C 5 |2 Crossref
|u B. Heinemann, B. King, Chapter 2: Overview and Scientific Objectives, this report (2022)
999 C 5 |2 Crossref
|u DESY Radiation Protection Group (2020). https://d3.desy.de/index_eng.html
999 C 5 |a 10.1016/j.nima.2018.11.133
|9 -- missing cx lookup --
|1 R Diener
|p 265 -
|2 Crossref
|u R. Diener et al., The DESY II test beam facility. Nucl. Instr. Methods A 922, 265 (2019). https://doi.org/10.1016/j.nima.2018.11.133
|t Nucl. Instr. Methods A
|v 922
|y 2019
999 C 5 |a 10.18429/JACoW-IPAC2019-MOPTS054
|9 -- missing cx lookup --
|2 Crossref
|u K. Sjobak et al., Status of the CLEAR electron beam user facility at CERN, MOPTS054, p. 4 (2019). https://doi.org/10.18429/JACoW-IPAC2019-MOPTS054. https://cds.cern.ch/record/2695092
999 C 5 |2 Crossref
|u ELBE Linac, The Superconducting Electron Linear Accelerator (2021). https://www.hzdr.de/db/Cms?pNid=584
999 C 5 |a 10.3367/UFNr.0093.196710o.0388
|9 -- missing cx lookup --
|1 IM Frank
|p 109 -
|2 Crossref
|u I.M. Frank, I.E. Tamm, Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS 14, 109 (1937). https://doi.org/10.3367/UFNr.0093.196710o.0388
|t Compt. Rend. Acad. Sci. URSS
|v 14
|y 1937
999 C 5 |a 10.1364/AO.35.001566
|9 -- missing cx lookup --
|1 PE Ciddor
|p 1566 -
|2 Crossref
|u P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566 (1996)
|t Appl. Opt.
|v 35
|y 1996
999 C 5 |a 10.1088/0026-1394/2/2/002
|9 -- missing cx lookup --
|1 B Edlén
|p 71 -
|2 Crossref
|u B. Edlén, The refractive index of air. Metrologia 2, 71 (1966). https://doi.org/10.1088/0026-1394/2/2/002
|t Metrologia
|v 2
|y 1966
999 C 5 |2 Crossref
|u J.A. Stone, J.H. Zimmerman, NIST Engineering Metrology Tool Box: Index of Refraction of Air (2022). https://emtoolbox.nist.gov/Main/Main.asp
999 C 5 |2 Crossref
|u ATLAS inner detector: Technical Design Report, 1, Technical design report. ATLAS, CERN, Geneva (1997). https://cds.cern.ch/record/331063
999 C 5 |2 Crossref
|u F. Hahn et al., NA62: Technical Design Document, tech. rep., CERN (2010). https://cds.cern.ch/record/1404985
999 C 5 |a 10.1088/1748-0221/7/01/P01019
|9 -- missing cx lookup --
|2 Crossref
|u C. Bartels et al., Design and construction of a cherenkov detector for compton polarimetry at the ILC. JINST 7, P01019 (2012). arXiv: 1011.6314 [physics.ins-det]
999 C 5 |a 10.1016/j.anucene.2017.12.024
|9 -- missing cx lookup --
|1 G Bentoumi
|p 86 -
|2 Crossref
|u G. Bentoumi et al., Reactor power monitoring using Cherenkov radiation transmitted through a small-bore metallic tube. Ann. Nucl. Energy 114, 86 (2018). https://doi.org/10.1016/j.anucene.2017.12.024
|t Ann. Nucl. Energy
|v 114
|y 2018
999 C 5 |2 Crossref
|u F. Burkart et al., The ares Linac at Desy (2022)
999 C 5 |2 Crossref
|u S. Meuren, Probing Strong-field QED at FACET-II (SLAC E-320), Talk presented at FACET-II Science Workshop 2019 (2019). https://conf.slac.stanford.edu/facet-2-2019/sites/facet-2-2019.conf.slac.stanford.edu/files/basic-page-docs/sfqed_2019.pdf
999 C 5 |2 Crossref
|u O. Semiconductor, J-Series SiPM Sensors (2021). https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf
999 C 5 |2 Crossref
|u Hamamatsu, S5344 Si APD (2021). https://www.hamamatsu.com/resources/pdf/ssd/s12053-02_etc_kapd1001e.pdf
999 C 5 |2 Crossref
|u S. Collaboration, SHiP Experiment—Comprehensive Design Study report, tech. rep., CERN (2019). https://cds.cern.ch/record/2704147
999 C 5 |2 Crossref
|u CAEN, DT5702 32 Channel SiPM Readout Board (2022). https://www.caen.it/products/dt5702/
999 C 5 |2 Crossref
|u CAEN, DT5550W Complete Readout System based on Weeroc ASIC (2022). https://www.caen.it/products/dt5550w/
999 C 5 |a 10.1109/NSSMIC.2011.6154596
|9 -- missing cx lookup --
|2 Crossref
|u M. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium Conference Record, p. 1171 (2011)
999 C 5 |2 Crossref
|u B. Vormwald, From Neutrino Physics to Beam Polarisation—a High Precision Story at the ILC, University of Hamburg, Diss., Dr. University of Hamburg (2014). https://bib-pubdb1.desy.de/record/168227
999 C 5 |2 Crossref
|u CAEN, A7585 1 Ch. +85 V/10 mA Digital Controlled SiPM Power Supply (2022). https://www.caen.it/products/a7585/
999 C 5 |a 10.1038/s41598-020-66832-x
|9 -- missing cx lookup --
|1 K Fleck
|p 9894 -
|2 Crossref
|u K. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020). https://doi.org/10.1038/s41598-020-66832-x
|t Sci. Rep.
|v 10
|y 2020
999 C 5 |a 10.1103/PhysRevLett.113.224801
|1 G Sarri
|9 -- missing cx lookup --
|2 Crossref
|u G. Sarri et al., Ultrahigh brilliance multi-MeV $$\gamma$$-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801
|t Phys. Rev. Lett.
|v 113
|y 2014
999 C 5 |a 10.1063/1.4875336
|1 W Schumaker
|9 -- missing cx lookup --
|2 Crossref
|u W. Schumaker et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). https://doi.org/10.1063/1.4875336
|t Phys. Plasmas
|v 21
|y 2014
999 C 5 |a 10.1016/j.nima.2015.06.012
|9 -- missing cx lookup --
|1 F Barbosa
|p 376 -
|2 Crossref
|u F. Barbosa et al., Pair spectrometer hodoscope for Hall D at Jefferson Lab. Nucl. Instr. Methods A 795, 376 (2015). https://doi.org/10.1016/j.nima.2015.06.012
|t Nucl. Instr. Methods A
|v 795
|y 2015
999 C 5 |a 10.1038/s41467-018-03165-4
|1 TN Wistisen
|9 -- missing cx lookup --
|2 Crossref
|u T.N. Wistisen et al., Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-03165-4
|t Nat. Commun.
|y 2018
999 C 5 |a 10.1063/1.5056248
|1 K Behm
|9 -- missing cx lookup --
|2 Crossref
|u K. Behm et al., A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 113303 (2018). https://doi.org/10.1063/1.5056248
|t Rev. Sci. Instrum.
|v 89
|y 2018
999 C 5 |a 10.1063/1.4884643
|1 D Corvan
|9 -- missing cx lookup --
|2 Crossref
|u D. Corvan, G. Sarri, M. Zepf, Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum. 85, 065119 (2014). https://doi.org/10.1063/1.4884643
|t Rev. Sci. Instrum.
|v 85
|y 2014
999 C 5 |a 10.1088/1742-6596/763/1/012011
|1 J McMillan
|9 -- missing cx lookup --
|2 Crossref
|u J. McMillan et al., Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays. J. Phys. 763, 012011 (2016). https://doi.org/10.1088/1742-6596/763/1/012011
|t J. Phys.
|v 763
|y 2016
999 C 5 |a 10.1016/S0168-9002(96)00793-0
|9 -- missing cx lookup --
|1 M Wilhelm
|p 462 -
|2 Crossref
|u M. Wilhelm et al., The response of the Euroball Cluster detector to $$\gamma$$-radiation up to 10 MeV. Nucl. Instr. Methods A 381, 462 (1996). https://doi.org/10.1016/S0168-9002(96)00793-0
|t Nucl. Instr. Methods A
|v 381
|y 1996
999 C 5 |a 10.1016/j.nima.2005.11.067
|9 -- missing cx lookup --
|1 M Lipoglavšek
|p 523 -
|2 Crossref
|u M. Lipoglavšek et al., Measuring high-energy $$\gamma$$-rays with Ge clover detectors. Nucl. Instr. Methods A 557, 523 (2006). https://doi.org/10.1016/j.nima.2005.11.067
|t Nucl. Instr. Methods A
|v 557
|y 2006
999 C 5 |a 10.1088/0031-9155/47/8/201
|9 -- missing cx lookup --
|1 C van Eijk
|p R85 -
|2 Crossref
|u C. van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85 (2002). https://doi.org/10.1088/0031-9155/47/8/201
|t Phys. Med. Biol.
|v 47
|y 2002
999 C 5 |a 10.1016/B978-0-08-010586-4.50061-4
|9 -- missing cx lookup --
|2 Crossref
|u L. Landau, 56—On The Energy Loss Of Fast Particles By Ionization, Collected Papers of L.D. Landau, ed. by D. Ter Haar, Pergamon, p. 417 (1965). https://www.sciencedirect.com/science/article/pii/B9780080105864500614
999 C 5 |a 10.1103/revmodphys.60.663
|9 -- missing cx lookup --
|1 H Bichsel
|p 663 -
|2 Crossref
|u H. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys. 60, 663 (1988). https://doi.org/10.1103/revmodphys.60.663
|t Rev. Mod. Phys.
|v 60
|y 1988
999 C 5 |a 10.1093/ptep/ptac097
|9 -- missing cx lookup --
|2 Crossref
|u Particle Data Group, R. Workman et al., Review of particle physics. Progr. Theor. Exp. Phys. 549, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097. https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434166/ptac097.pdf
999 C 5 |a 10.1016/0010-4655(84)90085-7
|9 -- missing cx lookup --
|1 K Kölbig
|p 97 -
|2 Crossref
|u K. Kölbig, B. Schorr, A program package for the Landau distribution. Comput. Phys. Commun. 31, 97 (1984). https://doi.org/10.1016/0010-4655(84)90085-7
|t Comput. Phys. Commun.
|v 31
|y 1984
999 C 5 |a 10.1016/j.radphyschem.2005.09.005
|9 -- missing cx lookup --
|1 S Klein
|p 696 -
|2 Crossref
|u S. Klein, Pair production from 10 GeV to 10 ZeV. Radiat. Phys. Chem. 75, 696 (2006). https://doi.org/10.1016/j.radphyschem.2005.09.005
|t Radiat. Phys. Chem.
|v 75
|y 2006
999 C 5 |1 W Press
|y 2007
|2 Crossref
|u W. Press et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)
|t Numerical Recipes 3rd Edition: The Art of Scientific Computing
999 C 5 |1 M Piana
|y 1994
|2 Crossref
|u M. Piana, Inversion of bremsstrahlung spectra emitted by solar plasma. AAP 288, 949 (1994)
999 C 5 |a 10.1109/ICASSP.1993.319857
|9 -- missing cx lookup --
|2 Crossref
|u A. Mohammad-Djafari, On the estimation of hyperparameters in Bayesian approach of solving inverse problems, in 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, p. 495 (1993)
999 C 5 |a 10.1007/978-94-011-5430-7_16
|9 -- missing cx lookup --
|2 Crossref
|u A. Mohammad-Djafari, A full Bayesian approach for inverse problems, in Maximum Entropy and Bayesian Methods, ed. by K.M. Hanson and R.N. Silver (Springer Netherlands, Dordrecht, 1996), p. 135
999 C 5 |a 10.1103/PhysRevAccelBeams.23.064001
|9 -- missing cx lookup --
|2 Crossref
|u T.G. Blackburn et al., Model-independent inference of laser intensity. Phys. Rev. Accel. Beams 23, 064001 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.064001. arXiv:1911.02349
999 C 5 |a 10.1088/1748-0221/10/08/P08008
|9 -- missing cx lookup --
|1 O Karacheban
|p P08008 -
|2 Crossref
|u O. Karacheban et al., Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II. JINST 10, P08008 (2015). https://doi.org/10.1088/1748-0221/10/08/P08008. arXiv:1504.04023 [physics.ins-det]
|t JINST
|v 10
|y 2015
999 C 5 |2 Crossref
|u B. Buonomo et al., A wide range electrons, photons, neutrons beam facility, in Proceedings of EPAC08, p. 3321 (2008)
999 C 5 |a 10.1103/PhysRevA.110.023510
|9 -- missing cx lookup --
|2 Crossref
|u K. Fleck et al., Dependence on laser intensity of the number-weighted angular distribution of Compton-scattered photon beams (2024). arXiv:2402.03454 [physics.plasm-ph]
999 C 5 |a 10.1063/1.1710367
|9 -- missing cx lookup --
|1 W Shockley
|p 635 -
|2 Crossref
|u W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635 (1938). https://doi.org/10.1063/1.1710367
|t J. Appl. Phys.
|v 9
|y 1938
999 C 5 |2 Crossref
|u CAEN company FERS-5200 Front-End Readout System, https://www.caen.it/subfamilies/fers-5200
999 C 5 |2 Crossref
|u CAEN User Manual UM7945, https://www.caen.it/?downloadfile=6184
999 C 5 |2 Crossref
|u WEEROC company, http://www.weeroc.com/en/products/citiroc
999 C 5 |2 Crossref
|u CAEN company SY5527 Universal Multichannel Power Supply System, https://www.caen.it/products/sy5527/, https://www.caen.it/products/a2519/, https://www.caen.it/products/a1561h/
999 C 5 |2 Crossref
|u B. Dudar, MSc. Thesis (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55607/TSNUK_NPD_master_eng.pdf
999 C 5 |a 10.1016/S0168-9002(97)01079-6
|9 -- missing cx lookup --
|1 J Altegoer
|p 96 -
|2 Crossref
|u J. Altegoer et al., The NOMAD experiment at the CERN SPS. Nucl. Instrum. Methods A 404, 96 (1998). https://doi.org/10.1016/S0168-9002(97)01079-6
|t Nucl. Instrum. Methods A
|v 404
|y 1998
999 C 5 |a 10.1016/0168-9002(91)90547-4
|9 -- missing cx lookup --
|1 K Ahmet
|p 275 -
|2 Crossref
|u K. Ahmet et al., The OPAL detector at LEP. Nucl. Instrum. Methods A 305, 275 (1991). https://doi.org/10.1016/0168-9002(91)90547-4
|t Nucl. Instrum. Methods A
|v 305
|y 1991
999 C 5 |a 10.1016/S0168-9002(98)00540-3
|9 -- missing cx lookup --
|1 H Avakian
|p 69 -
|2 Crossref
|u H. Avakian et al., Performance of the electromagnetic calorimeter of the HERMES experiment. Nucl. Instrum. Methods A 417, 69 (1998). https://doi.org/10.1016/S0168-9002(98)00540-3. arXiv: hep-ex/9810004
|t Nucl. Instrum. Methods A
|v 417
|y 1998
999 C 5 |a 10.1016/0168-9002(94)90990-3
|9 -- missing cx lookup --
|1 M Kobayashi
|p 210 -
|2 Crossref
|u M. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101. Nucl. Instrum. Methods A 345, 210 (1994)
|t Nucl. Instrum. Methods A
|v 345
|y 1994
999 C 5 |a 10.1016/0168-9002(94)90990-3
|9 -- missing cx lookup --
|2 Crossref
|u M. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101, tech. rep., KEK (1993). https://cds.cern.ch/record/259413
999 C 5 |a 10.1016/0167-5087(83)91296-6
|9 -- missing cx lookup --
|1 AV Inyakin
|p 103 -
|2 Crossref
|u A.V. Inyakin et al., Investigation of the characteristics of lead glass $$\gamma$$ spectrometer radiators irradiated by high-energy particles. Nucl. Instrum. Methods 215, 103 (1983). https://doi.org/10.1016/0167-5087(83)91296-6
|t Nucl. Instrum. Methods
|v 215
|y 1983
999 C 5 |a 10.1016/j.nima.2005.01.328
|9 -- missing cx lookup --
|1 MY Balatz
|p 114 -
|2 Crossref
|u M.Y. Balatz et al., The lead-glass electromagnetic calorimeter for the SELEX experiment. Nucl. Instrum. Methods A 545, 114 (2005). https://doi.org/10.1016/j.nima.2005.01.328
|t Nucl. Instrum. Methods A
|v 545
|y 2005
999 C 5 |a 10.1088/1748-0221/3/08/S08004
|9 -- missing cx lookup --
|1 S Chatrchyan
|p S08004 -
|2 Crossref
|u S. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004
|t JINST
|v 3
|y 2008
999 C 5 |a 10.1088/1748-0221/9/08/C08012
|9 -- missing cx lookup --
|1 B Vormwald
|p C08012 -
|2 Crossref
|u B. Vormwald, Polarisation and beam energy measurement at a linear $$e^+e^-$$ collider. JINST 9, C08012 (2014). https://doi.org/10.1088/1748-0221/9/08/C08012
|t JINST
|v 9
|y 2014
999 C 5 |a 10.1109/NSSMIC.2011.6154596
|9 -- missing cx lookup --
|2 Crossref
|u M. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, p. 1171 (2011)
999 C 5 |2 Crossref
|u LEDTRONICS, Datasheet SML0603-395-TR
999 C 5 |2 Crossref
|u LUXE simulation software, (2021). https://github.com/LUXEsoftware/lxsim
999 C 5 |a 10.1103/PhysRevD.98.030001
|1 M Tanabashi
|9 -- missing cx lookup --
|2 Crossref
|u M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018)
|t Phys. Rev. D
|v 98
|y 2018
999 C 5 |a 10.1088/1748-0221/14/09/P09019
|9 -- missing cx lookup --
|1 P Baesso
|p P09019 -
|2 Crossref
|u P. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/P09019. arXiv: 2005.00310 [physics.ins-det]
|t JINST
|v 14
|y 2019
999 C 5 |2 Crossref
|u TLU documentation, (2019). https://ohwr.org/project/fmc-mtlu
999 C 5 |a 10.1016/j.nima.2019.04.097
|9 -- missing cx lookup --
|2 Crossref
|u D. Cussans, Timing and synchronization of the DUNE neutrino detector. Nucl. Instr. Methods A 958, 162143 (2020). https://doi.org/10.1016/j.nima.2019.04.097
999 C 5 |2 Crossref
|u EUDAQ2 documentation, (2020). https://eudaq.github.io
999 C 5 |2 Crossref
|u E. Sombrowski et al., “jddd”: a Java DOOCS Data Display for the XFEL, in International Conference on Accelerator and Large Experimental Physics Control Systems, Knoxville. JACoW, Knoxville, p. 43 (2007). https://bib-pubdb1.desy.de/record/82503
999 C 5 |2 Crossref
|u R. Abela et al., XFEL: the European X-Ray Free-Electron Laser—Technical Design Report. DESY, Hamburg, p. 1 (2006). https://bib-pubdb1.desy.de/record/77248
999 C 5 |2 Crossref
|u F. Burkart, W. Decking, Extraction and XTD20 Transfer Line: Conceptual Design Report
999 C 5 |a 10.5281/zenodo.4008390
|9 -- missing cx lookup --
|2 Crossref
|u K. Sloan et al., KeithSloan/GDML: 1.3 Alpha, version v1.3alpha (2020). https://doi.org/10.5281/zenodo.4008390
999 C 5 |2 Crossref
|u D. Nölle, Electron beam diagnostics for the European XFEL, in Proceedings of DIPAC09, Basel, TUOA04 (2009). https://accelconf.web.cern.ch/d09/papers/tuoa04.pdf
999 C 5 |2 Crossref
|u B. Keil et al., The European XFEL Beam Position Monitor System, in Proceedings of IPAC’10, Kyoto, MOPE064 (2010). http://accelconf.web.cern.ch/IPAC10/papers/mope064.pdf
999 C 5 |2 Crossref
|u L. Deniau et al., Upgrade of MAD-X for HL-LHC Project and FCC studies, in JACOW Proceedings of the 13th International Computational Accelerator Physics Conference ICAP2018, p. 2018 (2018)
999 C 5 |a 10.1016/j.cpc.2020.107200
|9 -- missing cx lookup --
|2 Crossref
|u L.J. Nevay et al., BDSIM: an accelerator tracking code with particle-matter interactions. Comput. Phys. Commun. 252, 107200 (2020). https://doi.org/10.1016/j.cpc.2020.107200. arXiv:1808.10745 [physics.comp-ph]
999 C 5 |2 Crossref
|u https://flash.desy.de/
999 C 5 |a 10.1016/j.nds.2014.07.049
|9 -- missing cx lookup --
|1 TT Böhlen
|p 211 -
|2 Crossref
|u T.T. Böhlen et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014)
|t Nucl. Data Sheets
|v 120
|y 2014
999 C 5 |a 10.1088/1748-0221/8/09/T09001
|9 -- missing cx lookup --
|1 R Bähre
|p T09001 -
|2 Crossref
|u R. Bähre et al., Any light particle search II—Technical Design Report. JINST 8, T09001 (2013). https://doi.org/10.1088/1748-0221/8/09/T09001. arXiv:1302.5647 [physics.ins-det]
|t JINST
|v 8
|y 2013
999 C 5 |2 Crossref
|u Berthold, https://www.berthold.com, https://www.berthold.com/?eID=dumpFile &t=f &download=1 &logInUri=%2Fen%2Fmyberthold%2F &f=1094 &token=4aabc03604542ee462e31bc841b59febee612d4c
999 C 5 |a 10.1016/j.jnucmat.2014.05.010
|9 -- missing cx lookup --
|1 S Park
|p 205 -
|2 Crossref
|u S. Park, J. Jang, H. Lee, Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate. J. Nucl. Mater. 452, 205 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.010
|t J. Nucl. Mater.
|v 452
|y 2014
999 C 5 |2 Crossref
|u O. Borysov, Radiation dose for tracker electronics in the rack, https://indico.desy.de/event/33847/contributions/119752/attachments/72415/92841/background_sim_pcb_dose_21032022.pdf


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21