001 | 605052 | ||
005 | 20250723171629.0 | ||
024 | 7 | _ | |a 10.1140/epjs/s11734-024-01164-9 |2 doi |
024 | 7 | _ | |a arXiv:2308.00515 |2 arXiv |
024 | 7 | _ | |a WOS:001324531100003 |2 WOS |
024 | 7 | _ | |a altmetric:169261578 |2 altmetric |
024 | 7 | _ | |a openalex:W4403050980 |2 openalex |
037 | _ | _ | |a PUBDB-2024-01310 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a DESY-24-048 |2 DESY |
088 | _ | _ | |a arXiv:2308.00515 |2 arXiv |
100 | 1 | _ | |a Abramowicz, Halina |0 P:(DE-H253)PIP1003003 |b 0 |
245 | _ | _ | |a Technical Design Report for the LUXE Experiment |
260 | _ | _ | |a Heidelberg |c 2024 |b Springer |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736240936_1944677 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This Technical Design Report presents a detailed description of all aspects of the LUXE (Laser Und XFEL Experiment), an experiment that will combine the high-quality and high-energy electron beam of the European XFEL with a high-intensity laser, to explore the uncharted terrain of strong-field quantum electrodynamics characterised by both high energy and high intensity, reaching the Schwinger field and beyond. The further implications for the search of physics beyond the Standard Model are also discussed. |
536 | _ | _ | |a 622 - Detector Technologies and Systems (POF4-622) |0 G:(DE-HGF)POF4-622 |c POF4-622 |f POF IV |x 0 |
542 | _ | _ | |i 2024-10-01 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-10-02 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to DataCite |
650 | _ | 7 | |a energy, high |2 Other |
650 | _ | 7 | |a electron, beam |2 Other |
650 | _ | 7 | |a quantum electrodynamics, strong field |2 Other |
650 | _ | 7 | |a laser |2 Other |
650 | _ | 7 | |a new physics |2 Other |
693 | _ | _ | |0 EXP:(DE-H253)LUXE-20220501 |5 EXP:(DE-H253)LUXE-20220501 |e Laser Und XFEL Experiment |x 0 |
700 | 1 | _ | |a Soto, M. Almanza |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Assmann, Ralph |0 P:(DE-H253)PIP1017739 |b 2 |
700 | 1 | _ | |a Athanassiadis, Antonios |0 P:(DE-H253)PIP1103471 |b 3 |
700 | 1 | _ | |a Avoni, G. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Behnke, Ties |0 P:(DE-H253)PIP1003157 |b 5 |
700 | 1 | _ | |a Benettoni, M. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Benhammou, Yan |0 P:(DE-H253)PIP1027710 |b 7 |
700 | 1 | _ | |a Bhatt, Jayesh |0 P:(DE-H253)PIP1103864 |b 8 |
700 | 1 | _ | |a Blackburn, Thomas |0 P:(DE-H253)PIP1094409 |b 9 |
700 | 1 | _ | |a Blanch, C. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Bonaldo, S. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Boogert, Stewart |0 P:(DE-H253)PIP1032082 |b 12 |
700 | 1 | _ | |a Borysov, Oleksandr |0 P:(DE-H253)PIP1027706 |b 13 |
700 | 1 | _ | |a Borysova, Maryna |0 P:(DE-H253)PIP1086957 |b 14 |
700 | 1 | _ | |a Boudry, Vincent |0 P:(DE-H253)PIP1002829 |b 15 |
700 | 1 | _ | |a Breton, Dominique |0 P:(DE-H253)PIP1089339 |b 16 |
700 | 1 | _ | |a Brinkmann, Reinhard |0 P:(DE-H253)PIP1002844 |b 17 |
700 | 1 | _ | |a Bruschi, Marco |0 P:(DE-H253)PIP1002788 |b 18 |
700 | 1 | _ | |a Burkart, Florian |0 P:(DE-H253)PIP1080380 |b 19 |
700 | 1 | _ | |a Buesser, Karsten |0 P:(DE-H253)PIP1002872 |b 20 |
700 | 1 | _ | |a Cavanagh, Niall |0 P:(DE-H253)PIP1094411 |b 21 |
700 | 1 | _ | |a Dal Corso, Flavio |0 P:(DE-H253)PIP1002883 |b 22 |
700 | 1 | _ | |a Decking, Winfried |0 P:(DE-H253)PIP1002733 |b 23 |
700 | 1 | _ | |a Deniaud, M. |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Diner, O. |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Dosselli, Umberto |b 26 |
700 | 1 | _ | |a Elad, Michal |0 P:(DE-H253)PIP1094892 |b 27 |
700 | 1 | _ | |a Epshteyn, L. |0 P:(DE-HGF)0 |b 28 |
700 | 1 | _ | |a Esperante, D. |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Ferber, Torben |0 P:(DE-H253)PIP1004536 |b 30 |
700 | 1 | _ | |a Firlej, M. |0 P:(DE-HGF)0 |b 31 |
700 | 1 | _ | |a Fiutowski, T. |0 P:(DE-HGF)0 |b 32 |
700 | 1 | _ | |a Fleck, Kyle |0 P:(DE-H253)PIP1094410 |b 33 |
700 | 1 | _ | |a Fuster-Martinez, N. |0 P:(DE-HGF)0 |b 34 |
700 | 1 | _ | |a Gadow, Karsten |0 P:(DE-H253)PIP1002528 |b 35 |
700 | 1 | _ | |a Gaede, Frank |0 P:(DE-H253)PIP1002530 |b 36 |
700 | 1 | _ | |a Gallas, Alexandre |0 P:(DE-H253)PIP1089426 |b 37 |
700 | 1 | _ | |a García Cabrera, Héctor |0 P:(DE-H253)PIP1093035 |b 38 |
700 | 1 | _ | |a Gerstmayr, Elias |0 P:(DE-H253)PIP1087051 |b 39 |
700 | 1 | _ | |a Ghenescu, Veta |b 40 |
700 | 1 | _ | |a Giorato, Michele |0 P:(DE-H253)PIP1100386 |b 41 |
700 | 1 | _ | |a Golubeva, Nina |0 P:(DE-H253)PIP1002576 |b 42 |
700 | 1 | _ | |a Grojean, Christophe |0 P:(DE-H253)PIP1023796 |b 43 |
700 | 1 | _ | |a Grutta, Pietro |0 P:(DE-H253)PIP1098994 |b 44 |
700 | 1 | _ | |a Grzelak, Grzegorz |0 P:(DE-H253)PIP1003381 |b 45 |
700 | 1 | _ | |a Hallford, John Andrew |0 P:(DE-H253)PIP1091363 |b 46 |
700 | 1 | _ | |a Hartman, Luca |0 P:(DE-H253)PIP1102420 |b 47 |
700 | 1 | _ | |a Heinemann, Beate |0 P:(DE-H253)PIP1030369 |b 48 |
700 | 1 | _ | |a Heinzl, Thomas |0 P:(DE-H253)PIP1097685 |b 49 |
700 | 1 | _ | |a Helary, Louis |0 P:(DE-H253)PIP1088299 |b 50 |
700 | 1 | _ | |a Hendriks, Luke Jacobus Hendrikus |0 P:(DE-H253)PIP1105888 |b 51 |
700 | 1 | _ | |a Hoffmann, Marius |b 52 |
700 | 1 | _ | |a Horn, Alexander |b 53 |
700 | 1 | _ | |a Huang, Shan |0 P:(DE-H253)PIP1094891 |b 54 |
700 | 1 | _ | |a Huang, Xinhe |0 P:(DE-H253)PIP1092157 |b 55 |
700 | 1 | _ | |a Idzik, Marek |0 P:(DE-H253)PIP1091171 |b 56 |
700 | 1 | _ | |a Irles, Adrián |0 P:(DE-H253)PIP1024692 |b 57 |
700 | 1 | _ | |a King, Ben |0 P:(DE-H253)PIP1100286 |b 58 |
700 | 1 | _ | |a Klute, Markus |0 P:(DE-H253)PIP1102406 |b 59 |
700 | 1 | _ | |a Kropf, Annabel |0 P:(DE-H253)PIP1096813 |b 60 |
700 | 1 | _ | |a Kroupp, Eyal |0 P:(DE-H253)PIP1095554 |b 61 |
700 | 1 | _ | |a Lahno, H. |0 P:(DE-HGF)0 |b 62 |
700 | 1 | _ | |a Manghi, F. Lasagni |0 P:(DE-HGF)0 |b 63 |
700 | 1 | _ | |a Lawhorn, Jay Mathew |0 P:(DE-H253)PIP1106347 |b 64 |
700 | 1 | _ | |a Levanon, A. |0 P:(DE-HGF)0 |b 65 |
700 | 1 | _ | |a Levi, Gianluca |0 P:(DE-H253)PIP1099214 |b 66 |
700 | 1 | _ | |a Levinson, Eli |0 P:(DE-H253)PIP1108797 |b 67 |
700 | 1 | _ | |a Levy, Itamar |0 P:(DE-H253)PIP1027707 |b 68 |
700 | 1 | _ | |a Liberman, Adam |0 P:(DE-H253)PIP1086123 |b 69 |
700 | 1 | _ | |a Liss, Beata |0 P:(DE-H253)PIP1002007 |b 70 |
700 | 1 | _ | |a List, Benno |0 P:(DE-H253)PIP1002008 |b 71 |
700 | 1 | _ | |a List, Jenny |0 P:(DE-H253)PIP1005630 |b 72 |
700 | 1 | _ | |a Lohmann, Wolfgang |0 P:(DE-H253)PIP1003723 |b 73 |
700 | 1 | _ | |a Maalmi, Jihane |0 P:(DE-H253)PIP1089342 |b 74 |
700 | 1 | _ | |a Madlener, Thomas |0 P:(DE-H253)PIP1093201 |b 75 |
700 | 1 | _ | |a Malka, Victor |0 P:(DE-H253)PIP1031397 |b 76 |
700 | 1 | _ | |a Marsault, Tanguy |0 P:(DE-H253)PIP1104707 |b 77 |
700 | 1 | _ | |a Mattiazzo, S. |0 P:(DE-HGF)0 |b 78 |
700 | 1 | _ | |a Meloni, Federico |0 P:(DE-H253)PIP1083387 |b 79 |
700 | 1 | _ | |a Miron, D. |0 P:(DE-HGF)0 |b 80 |
700 | 1 | _ | |a Morandin, Mauro |b 81 |
700 | 1 | _ | |a Moron, Jakub |0 P:(DE-H253)PIP1091146 |b 82 |
700 | 1 | _ | |a Nanni, J. |0 P:(DE-HGF)0 |b 83 |
700 | 1 | _ | |a Neagu, A. T. |0 P:(DE-HGF)0 |b 84 |
700 | 1 | _ | |a Negodin, Evgueni |0 P:(DE-H253)PIP1000470 |b 85 |
700 | 1 | _ | |a Paccagnella, A. |0 P:(DE-HGF)0 |b 86 |
700 | 1 | _ | |a Pantano, D. |0 P:(DE-HGF)0 |b 87 |
700 | 1 | _ | |a Pietruch, D. |0 P:(DE-HGF)0 |b 88 |
700 | 1 | _ | |a Pomerantz, I. |0 P:(DE-HGF)0 |b 89 |
700 | 1 | _ | |a Poeschl, Roman |0 P:(DE-H253)PIP1080600 |b 90 |
700 | 1 | _ | |a Potlog, Mihai |0 P:(DE-H253)PIP1099137 |b 91 |
700 | 1 | _ | |a Prasad, Rajendra |0 P:(DE-H253)PIP1089542 |b 92 |
700 | 1 | _ | |a Quishpe, Raquel |0 P:(DE-H253)PIP1103200 |b 93 |
700 | 1 | _ | |a Ranken, Evan |0 P:(DE-H253)PIP1101170 |b 94 |
700 | 1 | _ | |a Ringwald, Andreas |0 P:(DE-H253)PIP1001650 |b 95 |
700 | 1 | _ | |a Roich, A. |0 P:(DE-HGF)0 |b 96 |
700 | 1 | _ | |a Salgado, F. |0 P:(DE-HGF)0 |b 97 |
700 | 1 | _ | |a Santra, Arka |0 P:(DE-H253)PIP1094412 |b 98 |
700 | 1 | _ | |a Sarri, Gianluca |0 P:(DE-H253)PIP1094414 |b 99 |
700 | 1 | _ | |a Saevert, Alexander |0 P:(DE-H253)PIP1085480 |b 100 |
700 | 1 | _ | |a Sbrizzi, Antonio |0 P:(DE-H253)PIP1001665 |b 101 |
700 | 1 | _ | |a Schmitt, Stefan |0 P:(DE-H253)PIP1001586 |b 102 |
700 | 1 | _ | |a Schulthess, Ivo |0 P:(DE-H253)PIP1106252 |b 103 |
700 | 1 | _ | |a Schuwalow, Sergej |0 P:(DE-H253)PIP1006070 |b 104 |
700 | 1 | _ | |a Seipt, Daniel |0 P:(DE-H253)PIP1096585 |b 105 |
700 | 1 | _ | |a Simi, G. |0 P:(DE-HGF)0 |b 106 |
700 | 1 | _ | |a Soreq, Yotam |0 P:(DE-H253)PIP1106804 |b 107 |
700 | 1 | _ | |a Spataro, David |0 P:(DE-H253)PIP1088317 |b 108 |
700 | 1 | _ | |a Streeter, Matthew |0 P:(DE-H253)PIP1020832 |b 109 |
700 | 1 | _ | |a Swientek, K. |0 P:(DE-HGF)0 |b 110 |
700 | 1 | _ | |a Hod, Noam Tal |0 P:(DE-H253)PIP1094407 |b 111 |
700 | 1 | _ | |a Teter, T. |0 P:(DE-HGF)0 |b 112 |
700 | 1 | _ | |a Thiebault, Alice Helene |0 P:(DE-H253)PIP1100969 |b 113 |
700 | 1 | _ | |a Thoden, Daniel |0 P:(DE-H253)PIP1090948 |b 114 |
700 | 1 | _ | |a Trevisani, Nicolò |0 P:(DE-H253)PIP1102408 |b 115 |
700 | 1 | _ | |a Urmanov, R. |0 P:(DE-HGF)0 |b 116 |
700 | 1 | _ | |a Vasiukov, Sergii |0 P:(DE-H253)PIP1102873 |b 117 |
700 | 1 | _ | |a Walker, Stuart |0 P:(DE-H253)PIP1095691 |b 118 |
700 | 1 | _ | |a Warren, Matthew |0 P:(DE-H253)PIP1029799 |b 119 |
700 | 1 | _ | |a Yap, Yee Chinn |0 P:(DE-H253)PIP1080456 |b 120 |
700 | 1 | _ | |a Zadok, N. |0 P:(DE-HGF)0 |b 121 |
700 | 1 | _ | |a Zanetti, Marco |0 P:(DE-H253)PIP1095857 |b 122 |
700 | 1 | _ | |a Zarnecki, Aleksander Filip |b 123 |
700 | 1 | _ | |a Zbińkowski, P. |0 P:(DE-HGF)0 |b 124 |
700 | 1 | _ | |a Zembaczynski, Kamil |0 P:(DE-H253)PIP1102374 |b 125 |
700 | 1 | _ | |a Zepf, Matt |0 P:(DE-H253)PIP1089310 |b 126 |
700 | 1 | _ | |a Zerwas, Dirk |0 P:(DE-H253)PIP1089344 |b 127 |
700 | 1 | _ | |a Ziegler, Walter |0 P:(DE-H253)PIP1012249 |b 128 |
700 | 1 | _ | |a Zuffa, Mirco |0 P:(DE-H253)PIP1103650 |b 129 |
700 | 1 | _ | |a LUXE Collaboration |0 P:(DE-HGF)0 |b 130 |
700 | 1 | _ | |a Altarelli, Massimo |0 P:(DE-H253)PIP1005333 |b 131 |e Editor |
700 | 1 | _ | |a Jacobs, Ruth Magdalena |0 P:(DE-H253)PIP1028638 |b 132 |e Corresponding author |u desy |
700 | 1 | _ | |a Levy, Aharon |0 P:(DE-H253)PIP1002090 |b 133 |e Editor |
700 | 1 | _ | |a Wing, Matthew |0 P:(DE-H253)PIP1002533 |b 134 |e Editor |
700 | 1 | _ | |a LUXE Collaboration |0 P:(DE-HGF)0 |b 135 |e Research Group |
700 | 1 | _ | |a Heinemann, Beate |0 P:(DE-H253)PIP1030369 |b 136 |e Contact Person |
773 | 1 | 8 | |a 10.1140/epjs/s11734-024-01164-9 |b Springer Science and Business Media LLC |d 2024-10-01 |n 10 |p 1709-1974 |3 journal-article |2 Crossref |t The European Physical Journal Special Topics |v 233 |y 2024 |x 1951-6355 |
773 | _ | _ | |a 10.1140/epjs/s11734-024-01164-9 |0 PERI:(DE-600)2267176-6 |n 10 |p 1709-1974 |t European physical journal special topics |v 233 |y 2024 |x 1951-6355 |
787 | 0 | _ | |a Abramowicz, H. et.al. |d 2023 |i IsParent |0 PUBDB-2023-05632 |r arXiv:2308.00515 ; DESY-24-048 |t Technical Design Report for the LUXE Experiment |
856 | 4 | _ | |u https://rdcu.be/dYzFo |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:605052 |p OpenAPC_DEAL |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1003003 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1017739 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1103471 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1003157 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1027710 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1103864 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1094409 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 12 |6 P:(DE-H253)PIP1032082 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1027706 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1086957 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1002829 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 16 |6 P:(DE-H253)PIP1089339 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1002844 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1002788 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 19 |6 P:(DE-H253)PIP1080380 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 20 |6 P:(DE-H253)PIP1002872 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-H253)PIP1094411 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 22 |6 P:(DE-H253)PIP1002883 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 23 |6 P:(DE-H253)PIP1002733 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 23 |6 P:(DE-H253)PIP1002733 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 27 |6 P:(DE-H253)PIP1094892 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 27 |6 P:(DE-H253)PIP1094892 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 30 |6 P:(DE-H253)PIP1004536 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 33 |6 P:(DE-H253)PIP1094410 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 35 |6 P:(DE-H253)PIP1002528 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 36 |6 P:(DE-H253)PIP1002530 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 37 |6 P:(DE-H253)PIP1089426 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 38 |6 P:(DE-H253)PIP1093035 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 39 |6 P:(DE-H253)PIP1087051 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 41 |6 P:(DE-H253)PIP1100386 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 42 |6 P:(DE-H253)PIP1002576 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 43 |6 P:(DE-H253)PIP1023796 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 44 |6 P:(DE-H253)PIP1098994 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 45 |6 P:(DE-H253)PIP1003381 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 46 |6 P:(DE-H253)PIP1091363 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 47 |6 P:(DE-H253)PIP1102420 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 48 |6 P:(DE-H253)PIP1030369 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 49 |6 P:(DE-H253)PIP1097685 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 50 |6 P:(DE-H253)PIP1088299 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 51 |6 P:(DE-H253)PIP1105888 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 54 |6 P:(DE-H253)PIP1094891 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 55 |6 P:(DE-H253)PIP1092157 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 56 |6 P:(DE-H253)PIP1091171 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 57 |6 P:(DE-H253)PIP1024692 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 58 |6 P:(DE-H253)PIP1100286 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 59 |6 P:(DE-H253)PIP1102406 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 60 |6 P:(DE-H253)PIP1096813 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 61 |6 P:(DE-H253)PIP1095554 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 61 |6 P:(DE-H253)PIP1095554 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 64 |6 P:(DE-H253)PIP1106347 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 66 |6 P:(DE-H253)PIP1099214 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 66 |6 P:(DE-H253)PIP1099214 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 67 |6 P:(DE-H253)PIP1108797 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 68 |6 P:(DE-H253)PIP1027707 |
910 | 1 | _ | |a European Molecular Biology Laboratory |0 I:(DE-588b)235011-7 |k EMBL |b 69 |6 P:(DE-H253)PIP1086123 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 69 |6 P:(DE-H253)PIP1086123 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 70 |6 P:(DE-H253)PIP1002007 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 71 |6 P:(DE-H253)PIP1002008 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 72 |6 P:(DE-H253)PIP1005630 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 73 |6 P:(DE-H253)PIP1003723 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 74 |6 P:(DE-H253)PIP1089342 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 75 |6 P:(DE-H253)PIP1093201 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 77 |6 P:(DE-H253)PIP1104707 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 79 |6 P:(DE-H253)PIP1083387 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 82 |6 P:(DE-H253)PIP1091146 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 85 |6 P:(DE-H253)PIP1000470 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 90 |6 P:(DE-H253)PIP1080600 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 91 |6 P:(DE-H253)PIP1099137 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 92 |6 P:(DE-H253)PIP1089542 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 92 |6 P:(DE-H253)PIP1089542 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 92 |6 P:(DE-H253)PIP1089542 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 93 |6 P:(DE-H253)PIP1103200 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 94 |6 P:(DE-H253)PIP1101170 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 95 |6 P:(DE-H253)PIP1001650 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 98 |6 P:(DE-H253)PIP1094412 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 99 |6 P:(DE-H253)PIP1094414 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 100 |6 P:(DE-H253)PIP1085480 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 100 |6 P:(DE-H253)PIP1085480 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 101 |6 P:(DE-H253)PIP1001665 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 102 |6 P:(DE-H253)PIP1001586 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 103 |6 P:(DE-H253)PIP1106252 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 104 |6 P:(DE-H253)PIP1006070 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 105 |6 P:(DE-H253)PIP1096585 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 107 |6 P:(DE-H253)PIP1106804 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 108 |6 P:(DE-H253)PIP1088317 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 109 |6 P:(DE-H253)PIP1020832 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 109 |6 P:(DE-H253)PIP1020832 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 111 |6 P:(DE-H253)PIP1094407 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 113 |6 P:(DE-H253)PIP1100969 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 114 |6 P:(DE-H253)PIP1090948 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 115 |6 P:(DE-H253)PIP1102408 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 117 |6 P:(DE-H253)PIP1102873 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 118 |6 P:(DE-H253)PIP1095691 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 119 |6 P:(DE-H253)PIP1029799 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 120 |6 P:(DE-H253)PIP1080456 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 122 |6 P:(DE-H253)PIP1095857 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 125 |6 P:(DE-H253)PIP1102374 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 126 |6 P:(DE-H253)PIP1089310 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 126 |6 P:(DE-H253)PIP1089310 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 127 |6 P:(DE-H253)PIP1089344 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 128 |6 P:(DE-H253)PIP1012249 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 129 |6 P:(DE-H253)PIP1103650 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 131 |6 P:(DE-H253)PIP1005333 |
910 | 1 | _ | |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften |0 I:(DE-588b)2019024-4 |k MPG |b 131 |6 P:(DE-H253)PIP1005333 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 132 |6 P:(DE-H253)PIP1028638 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 133 |6 P:(DE-H253)PIP1002090 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 134 |6 P:(DE-H253)PIP1002533 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 136 |6 P:(DE-H253)PIP1030369 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-622 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Detector Technologies and Systems |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR PHYS J-SPEC TOP : 2022 |d 2024-12-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-12 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-12 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FTX-20210408 |k FTX |l Technol. zukünft. Teilchenph. Experim. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FTX-20210408 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
999 | C | 5 | |a 10.1103/PhysRevD.60.092004 |1 C Bamber |9 -- missing cx lookup -- |2 Crossref |u C. Bamber et al., Studies of nonlinear QED in collisions of 46.6-GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999) |t Phys. Rev. D |v 60 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevA.79.063407 |1 C Harvey |9 -- missing cx lookup -- |2 Crossref |u C. Harvey, T. Heinzl, A. Ilderton, Signatures of high-intensity Compton scattering. Phys. Rev. A 79, 063407 (2009). arXiv:0903.4151 [hep-ph] |t Phys. Rev. A |v 79 |y 2009 |
999 | C | 5 | |a 10.1103/PhysRevLett.127.052302 |1 J Adam |9 -- missing cx lookup -- |2 Crossref |u J. Adam et al., Measurement of $$e^+e^-$$ momentum and angular distributions from linearly polarized photon collisions. Phys. Rev. Lett. 127, 052302 (2021). https://doi.org/10.1103/PhysRevLett.127.052302. arXiv:1910.12400 [nucl-ex] |t Phys. Rev. Lett. |v 127 |y 2021 |
999 | C | 5 | |2 Crossref |u T.G. Blackburn, https://github.com/tgblackburn/ptarmigan |
999 | C | 5 | |a 10.1088/1367-2630/ac1bf6 |1 TG Blackburn |9 -- missing cx lookup -- |2 Crossref |u T.G. Blackburn, A.J. MacLeod, B. King, From local to nonlocal: higher fidelity simulations of photon emission in intense laser pulses. New J. Phys. 23, 085008 (2021). https://doi.org/10.1088/1367-2630/ac1bf6. arXiv:2103.06673 [hep-ph] |t New J. Phys. |v 23 |y 2021 |
999 | C | 5 | |a 10.1140/epjc/s10052-021-09955-3 |9 -- missing cx lookup -- |1 TG Blackburn |p 44 - |2 Crossref |u T.G. Blackburn, B. King, Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses. Eur. Phys. J. C 82, 44 (2022). https://doi.org/10.1140/epjc/s10052-021-09955-3. arXiv:2108.10883 [hep-ph] |t Eur. Phys. J. C |v 82 |y 2022 |
999 | C | 5 | |2 Crossref |u M. McCullough, Lectures on Physics Beyond the Standard Model, 6th Tri-Institute Summer School on Elementary Particles (2018) |
999 | C | 5 | |2 Crossref |u R.K. Ellis et al., Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020 (2019). arXiv:1910.11775 [hep-ex] |
999 | C | 5 | |a 10.1103/PhysRevLett.38.1440 |9 -- missing cx lookup -- |1 RD Peccei |p 1440 - |2 Crossref |u R.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.1103/PhysRevLett.38.1440 |t Phys. Rev. Lett. |v 38 |y 1977 |
999 | C | 5 | |a 10.1103/PhysRevD.16.1791 |9 -- missing cx lookup -- |1 RD Peccei |p 1791 - |2 Crossref |u R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977). https://doi.org/10.1103/PhysRevD.16.1791 |t Phys. Rev. D |v 16 |y 1977 |
999 | C | 5 | |a 10.1103/PhysRevLett.40.279 |9 -- missing cx lookup -- |1 F Wilczek |p 279 - |2 Crossref |u F. Wilczek, Problem of strong $$P$$ and $$T$$ invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978). https://doi.org/10.1103/PhysRevLett.40.279 |t Phys. Rev. Lett. |v 40 |y 1978 |
999 | C | 5 | |a 10.1103/PhysRevLett.40.223 |9 -- missing cx lookup -- |1 S Weinberg |p 223 - |2 Crossref |u S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223 (1978). https://doi.org/10.1103/PhysRevLett.40.223 |t Phys. Rev. Lett. |v 40 |y 1978 |
999 | C | 5 | |a 10.1103/PhysRevD.106.115034 |1 Z Bai |9 -- missing cx lookup -- |2 Crossref |u Z. Bai et al., New physics searches with an optical dump at LUXE. Phys. Rev. D 106, 115034 (2022). https://doi.org/10.1103/PhysRevD.106.115034. arXiv:2107.13554 [hep-ph] |t Phys. Rev. D |v 106 |y 2022 |
999 | C | 5 | |a 10.1140/epjs/s11734-021-00249-z |9 -- missing cx lookup -- |2 Crossref |u H. Abramowicz et al., Conceptual design report for the LUXE experiment. Eur. Phys. J. ST 230, 2445 (2021). https://doi.org/10.1140/epjs/s11734-021-00249-z. arXiv: 2102.02032 [hep-ex] |
999 | C | 5 | |a 10.1103/PhysRevLett.76.3116 |9 -- missing cx lookup -- |1 C Bula |p 3116 - |2 Crossref |u C. Bula et al., Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996) |t Phys. Rev. Lett. |v 76 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevLett.79.1626 |9 -- missing cx lookup -- |1 DL Burke |p 1626 - |2 Crossref |u D.L. Burke et al., Positron production in multi-photon light by light scattering. Phys. Rev. Lett. 79, 1626 (1997) |t Phys. Rev. Lett. |v 79 |y 1997 |
999 | C | 5 | |1 JM Cole |y 2018 |2 Crossref |u J.M. Cole et al., Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018). arXiv: 1707.06821 [physics.plasm-ph] |
999 | C | 5 | |1 K Poder |y 2018 |2 Crossref |u K. Poder et al., Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018). arXiv:1709.01861 [physics.plasm-ph] |
999 | C | 5 | |a 10.1364/HILAS.2022.HF4B.6 |9 -- missing cx lookup -- |2 Crossref |u Z. Chen et al., Preparation of Strong-field QED Experiments at FACET-II. Optica High-brightness Sources and Light-driven Interactions Congress 2022, Optica Publishing Group, 2022 HF4B.6. https://opg.optica.org/abstract.cfm?URI=HILAS-2022-HF4B.6 |
999 | C | 5 | |1 ICE Turcu |y 2016 |2 Crossref |u I.C.E. Turcu et al., High field physics and QED experiments at ELI-NP. Rom. Rep. Phys. 68, S145 (2016) |
999 | C | 5 | |2 Crossref |u J. Müller et al., Large-scale optical synchronization system of the European XFEL, in Proc. 29th Linear Accelerator Conference (LINAC’18), Beijing, 16–21 September 2018, Geneva (JACoW Publishing, 2019) p. 253 http://jacow.org/linac2018/papers/mopo121.pdf |
999 | C | 5 | |2 Crossref |u S. Schulz et al., Few Femtosecond Facility-Wide-Synchronization of the European XFEL, in Proceedings of the 39 the International Free-Electron Laser Conference (Hamburg) (2019). https://fel2019.vrws.de/papers/web04.pdf |
999 | C | 5 | |a 10.1088/1748-0221/18/05/P05007 |9 -- missing cx lookup -- |1 A Santra |p P05007 - |2 Crossref |u A. Santra, N.T. Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. J. Instrum. 18, P05007 (2023) |t J. Instrum. |v 18 |y 2023 |
999 | C | 5 | |a 10.1038/s41598-020-66832-x |9 -- missing cx lookup -- |1 K Fleck |p 9894 - |2 Crossref |u K. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020) |t Sci. Rep. |v 10 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevResearch.5.043046 |1 N Cavanagh |9 -- missing cx lookup -- |2 Crossref |u N. Cavanagh et al., Experimental characterization of a single-shot spectrometer for high-flux, GeV-scale gamma-ray beams. Phys. Rev. Res. 5, 043046 (2023). https://doi.org/10.1103/PhysRevResearch.5.043046 |t Phys. Rev. Res. |v 5 |y 2023 |
999 | C | 5 | |a 10.1016/S0370-2693(01)00496-8 |9 -- missing cx lookup -- |1 A Ringwald |p 107 - |2 Crossref |u A. Ringwald, Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B 510, 107 (2001). arXiv:hep-ph/0103185 |t Phys. Lett. B |v 510 |y 2001 |
999 | C | 5 | |a 10.1103/PhysRev.82.664 |9 -- missing cx lookup -- |1 J Schwinger |p 664 - |2 Crossref |u J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951) |t Phys. Rev. |v 82 |y 1951 |
999 | C | 5 | |a 10.1103/physreva.83.052122 |9 -- missing cx lookup -- |2 Crossref |u D. Hanneke, S. Fogwell Hoogerheide, G. Gabrielse et al., Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys. Rev. A 83, 052122 (2011). https://doi.org/10.1103/physreva.83.052122 |
999 | C | 5 | |a 10.3390/atoms7010028 |9 -- missing cx lookup -- |1 T Aoyama |p 28 - |2 Crossref |u T. Aoyama, T. Kinoshita, M. Nio, Theory of the anomalous magnetic moment of the electron. Atoms 7, 28 (2019). https://doi.org/10.3390/atoms7010028 |t Atoms |v 7 |y 2019 |
999 | C | 5 | |a 10.1016/j.physrep.2023.01.003 |9 -- missing cx lookup -- |1 A Fedotov |p 1 - |2 Crossref |u A. Fedotov et al., Advances in QED with intense background fields. Phys. Rep. 1010, 1 (2023). https://doi.org/10.1016/j.physrep.2023.01.003. arXiv:2203.00019 [hep-ph] |t Phys. Rep. |v 1010 |y 2023 |
999 | C | 5 | |a 10.1016/j.physrep.2009.10.004 |9 -- missing cx lookup -- |1 R Ruffini |p 1 - |2 Crossref |u R. Ruffini, G. Vereshchagin, S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1 (2010). https://doi.org/10.1016/j.physrep.2009.10.004. arXiv:0910.0974 [astro-ph.HE] |t Phys. Rep. |v 487 |y 2010 |
999 | C | 5 | |1 AI Nikishov |y 1962 |2 Crossref |u A.I. Nikishov, Absorption of high-energy photons in the universe. Sov. Phys. JETP 14, 393 (1962) |
999 | C | 5 | |a 10.1038/30410 |9 -- missing cx lookup -- |1 C Kouveliotou |p 235 - |2 Crossref |u C. Kouveliotou et al., An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235 (1998) |t Nature |v 393 |y 1998 |
999 | C | 5 | |a 10.1088/0034-4885/69/9/r03 |9 -- missing cx lookup -- |1 AK Harding |p 2631 - |2 Crossref |u A.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631 (2006). https://doi.org/10.1088/0034-4885/69/9/r03 |t Rep. Prog. Phys. |v 69 |y 2006 |
999 | C | 5 | |a 10.1088/0034-4885/78/11/116901 |1 R Turolla |9 -- missing cx lookup -- |2 Crossref |u R. Turolla, S. Zane, A. Watts, Magnetars: the physics behind observations. A review. Rep. Prog. Phys 78, 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901. arXiv:1507.02924 [astro-ph.HE] |t Rep. Prog. Phys |v 78 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevLett.122.190404 |1 V Yakimenko |9 -- missing cx lookup -- |2 Crossref |u V. Yakimenko et al., Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122, 190404 (2019). https://doi.org/10.1103/PhysRevLett.122.190404 |t Phys. Rev. Lett. |v 122 |y 2019 |
999 | C | 5 | |2 Crossref |u P.H. Bucksbaum et al., Probing QED Cascades and Pair Plasmas in Laboratory Experiments. LoI to Cosmic Frontier (2020). https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1-001.pdf |
999 | C | 5 | |a 10.1103/PhysRevLett.89.061802 |1 SZ Akhmadaliev |9 -- missing cx lookup -- |2 Crossref |u S.Z. Akhmadaliev et al., Experimental investigation of high-energy photon splitting in atomic fields. Phys. Rev. Lett. 89, 061802 (2002). https://doi.org/10.1103/PhysRevLett.89.061802. arXiv:hep-ex/0111084 |t Phys. Rev. Lett. |v 89 |y 2002 |
999 | C | 5 | |a 10.1080/0950034042000275360 |9 -- missing cx lookup -- |1 MY Ivanov |p 165 - |2 Crossref |u M.Y. Ivanov, M. Spanner, O. Smirnova, Anatomy of strong field ionization. J. Mod. Opt. 52, 165 (2005). https://doi.org/10.1080/0950034042000275360 |t J. Mod. Opt. |v 52 |y 2005 |
999 | C | 5 | |a 10.1103/PhysRevD.99.036008 |1 A Hartin |9 -- missing cx lookup -- |2 Crossref |u A. Hartin, A. Ringwald, N. Tapia, Measuring the boiling point of the vacuum of quantum electrodynamics. Phys. Rev. D 99, 036008 (2019). arXiv:1807.10670 [hep-ph] |t Phys. Rev. D |v 99 |y 2019 |
999 | C | 5 | |a 10.1103/PhysRevLett.130.071601 |1 C Nielsen |9 -- missing cx lookup -- |2 Crossref |u C. Nielsen et al., Precision measurement of trident production in strong electromagnetic fields. Phys. Rev. Lett. 130, 071601 (2023) |t Phys. Rev. Lett. |v 130 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevA.102.063110 |1 T Heinzl |9 -- missing cx lookup -- |2 Crossref |u T. Heinzl, B. King, A. Macleod, The locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A 102, 063110 (2020). https://doi.org/10.1103/PhysRevA.102.063110. arXiv:2004.13035 [hep-ph] |t Phys. Rev. A |v 102 |y 2020 |
999 | C | 5 | |a 10.1109/TNS.2006.869826 |9 -- missing cx lookup -- |1 J Allison |p 270 - |2 Crossref |u J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006) |t IEEE Trans. Nucl. Sci. |v 53 |y 2006 |
999 | C | 5 | |a 10.1016/j.nima.2016.06.125 |9 -- missing cx lookup -- |1 J Allison |p 186 - |2 Crossref |u J. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016) |t Nucl. Instrum. Methods A |v 835 |y 2016 |
999 | C | 5 | |a 10.1109/NSS/MIC42101.2019.9059613 |9 -- missing cx lookup -- |2 Crossref |u A. Irles, Testing highly integrated components for the technological prototype of the CALICE SiW-ECAL, in 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), p. 1 (2019). arXiv:2004.12792 [physics.ins-det] |
999 | C | 5 | |a 10.1103/RevModPhys.46.815 |9 -- missing cx lookup -- |1 Y-S Tsai |p 815 - |2 Crossref |u Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815 (1974). https://doi.org/10.1103/RevModPhys.46.815 |t Rev. Mod. Phys. |v 46 |y 1974 |
999 | C | 5 | |a 10.1364/OE.386112 |9 -- missing cx lookup -- |1 V Leroux |p 8257 - |2 Crossref |u V. Leroux, T. Eichner, A.R. Maier, Description of spatio-temporal couplings from heat-induced compressor grating deformation. Opt. Express 28, 8257 (2020). https://doi.org/10.1364/OE.386112 |t Opt. Express |v 28 |y 2020 |
999 | C | 5 | |2 Crossref |u A.L. Garcia et al., ReLaX: the HiBEF high-intensity short-pulse laser driver for relativistic laser-matter interaction and strong-field science at the HED instrument at EuXFEL. High Power laser Science and Engineering (2021). https://doi.org/accepted |
999 | C | 5 | |a 10.1016/0030-4018(85)90151-8 |9 -- missing cx lookup -- |2 Crossref |u D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447 (1985) [Erratum: Opt. Commun. 56, 219 (1985)] |
999 | C | 5 | |a 10.1063/1.5142833 |1 B Steffen |9 -- missing cx lookup -- |2 Crossref |u B. Steffen et al., Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Rev. Sci. Instrum. 91, 045123 (2020). https://doi.org/10.1063/1.5142833 |t Rev. Sci. Instrum. |v 91 |y 2020 |
999 | C | 5 | |a 10.1088/2040-8986/abad08 |1 SW Jolly |9 -- missing cx lookup -- |2 Crossref |u S.W. Jolly, O. Gobert, F. Quéré, Spatio-temporal characterization of ultrashort laser beams: a tutorial. J. Opt. 22, 103501 (2020) |t J. Opt. |v 22 |y 2020 |
999 | C | 5 | |2 Crossref |u The Distributed Object-Oriented Control System Framework. https://doocs-web.desy.de/index.html |
999 | C | 5 | |a 10.1088/0954-3899/41/8/087002 |1 B Abelev |9 -- missing cx lookup -- |2 Crossref |u B. Abelev et al., Technical design report for the upgrade of the ALICE Inner Tracking System. J. Phys. G 41, 087002 (2014) |t J. Phys. G |v 41 |y 2014 |
999 | C | 5 | |a 10.1016/j.nima.2016.05.016 |9 -- missing cx lookup -- |2 Crossref |u G. Aglieri Rinella, The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System. Nucl. Inst. Methods A. 845, 583 (2017). Proceedings of the Vienna Conference on Instrumentation 2016. https://doi.org/10.1016/j.nima.2016.05.016 |
999 | C | 5 | |2 Crossref |u TowerJazz, (2022). https://towersemi.com/ |
999 | C | 5 | |a 10.1088/1748-0221/3/08/s08002 |9 -- missing cx lookup -- |1 K Aamodt |p S08002 - |2 Crossref |u K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008). https://doi.org/10.1088/1748-0221/3/08/s08002 |t JINST |v 3 |y 2008 |
999 | C | 5 | |a 10.1115/1.3662552 |9 -- missing cx lookup -- |1 RE Kalman |p 35 - |2 Crossref |u R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35 (1960) |t Trans. ASME-J. Basic Eng. |v 82 |y 1960 |
999 | C | 5 | |a 10.1088/1361-6633/aab064 |1 M Garcia-Sciveres |9 -- missing cx lookup -- |2 Crossref |u M. Garcia-Sciveres, N. Wermes, A review of advances in pixel detectors for experiments with high rate and radiation. Rep. Prog. Phys. 81, 066101 (2018). https://doi.org/10.1088/1361-6633/aab064. arXiv:1705.10150 [physics.ins-det] |t Rep. Prog. Phys. |v 81 |y 2018 |
999 | C | 5 | |a 10.1016/j.nima.2015.09.057 |9 -- missing cx lookup -- |2 Crossref |u M. Mager, ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade. Nucl. Instr. Methods A 824, 434 (2016). Frontier detectors for frontier physics: proceedings of the 13th Pisa meeting on advanced detectors. https://doi.org/10.1016/j.nima.2015.09.057 |
999 | C | 5 | |a 10.1016/j.nima.2015.02.063 |9 -- missing cx lookup -- |1 P Yang |p 61 - |2 Crossref |u P. Yang et al., Low-power priority address-encoder and reset-decoder data-driven readout for monolithic active pixel sensors for tracker system. Nucl. Instr. Methods A 785, 61 (2015). https://doi.org/10.1016/j.nima.2015.02.063 |t Nucl. Instr. Methods A |v 785 |y 2015 |
999 | C | 5 | |a 10.1016/j.nima.2013.03.017 |9 -- missing cx lookup -- |2 Crossref |u S. Senyukov et al., Charged particle detection performances of CMOS pixel sensors produced in a 0.18 $$\mu$$m process with a high resistivity epitaxial layer. Nucl. Instr. Methods A 730, 115 (2013). Proceedings of the 9th international conference on radiation effects on semiconductor materials detectors and devices. https://doi.org/10.1016/j.nima.2013.03.017 |
999 | C | 5 | |a 10.1016/j.nima.2020.164859 |9 -- missing cx lookup -- |2 Crossref |u G. Aglieri Rinella et al., Charge collection properties of TowerJazz 180 nm CMOS Pixel Sensors in dependence of pixel geometries and bias parameters, studied using a dedicated test-vehicle: the Investigator chip. Nucl. Instr. Methods A 988, 164859 (2021). https://doi.org/10.1016/j.nima.2020.164859 |
999 | C | 5 | |a 10.1016/j.nima.2019.02.049 |9 -- missing cx lookup -- |1 D Dannheim |p 187 - |2 Crossref |u D. Dannheim et al., Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer. Nucl. Instr. Methods A 927, 187 (2019). https://doi.org/10.1016/j.nima.2019.02.049 |t Nucl. Instr. Methods A |v 927 |y 2019 |
999 | C | 5 | |2 Crossref |u Expression of Interest for an ALICE ITS Upgrade in LS3 (2018). http://cds.cern.ch/record/2644611 |
999 | C | 5 | |a 10.1088/1748-0221/11/12/c12023 |9 -- missing cx lookup -- |1 J Anderson |p C12023 - |2 Crossref |u J. Anderson et al., FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework. JINST 11, C12023 (2016). https://doi.org/10.1088/1748-0221/11/12/c12023 |t JINST |v 11 |y 2016 |
999 | C | 5 | |a 10.1051/epjconf/202024501037 |1 W Panduro Vazquez |9 -- missing cx lookup -- |2 Crossref |u W. Panduro Vazquez, FELIX: the new detector interface for ATLAS. Eur. Phys. J. Web Conf 245, 01037 (2020). https://doi.org/10.1051/epjconf/202024501037 |t Eur. Phys. J. Web Conf |v 245 |y 2020 |
999 | C | 5 | |a 10.1109/NSS/MIC42101.2019.9060037 |9 -- missing cx lookup -- |2 Crossref |u M. Trovato, FELIX: The New Readout System for the ATLAS Detector, in 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), p. 1 (2019) |
999 | C | 5 | |a 10.1109/TNS.2019.2904660 |9 -- missing cx lookup -- |1 A Borga |p 993 - |2 Crossref |u A. Borga et al., FELIX-based readout of the single-phase ProtoDUNE detector. IEEE Trans. Nucl. Sci. 66, 993 (2019). https://doi.org/10.1109/TNS.2019.2904660 |t IEEE Trans. Nucl. Sci. |v 66 |y 2019 |
999 | C | 5 | |2 Crossref |u CAEN EASY3000, Crate for EASY3000 Power Supply System for Hostile Area. https://www.caen.it/products/easy3000/ |
999 | C | 5 | |a 10.1016/j.nuclphysa.2018.10.075 |9 -- missing cx lookup -- |2 Crossref |u Y. Kim, The detector development and physics program in sPHENIX experiment at RHIC. Nucl. Phys. A 982, 955 (2019). The 27th international conference on ultrarelativistic nucleus-nucleus collisions: Quark Matter 2018. https://doi.org/10.1016/j.nuclphysa.2018.10.075 |
999 | C | 5 | |a 10.1051/epjconf/201817407002 |9 -- missing cx lookup -- |1 G De Robertis |p 07002 - |2 Crossref |u G. De Robertis et al., A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment. Eur. Phys. J. Web Conf. 174, 07002 (2018). https://doi.org/10.1051/epjconf/201817407002 |t Eur. Phys. J. Web Conf. |v 174 |y 2018 |
999 | C | 5 | |2 Crossref |u (2021). https://ww1.microchip.com/downloads/en/DeviceDoc/MIC2915x-30x-50x-75x-High-Current-Low-Dropout-Regulators-DS20005685B.pdf |
999 | C | 5 | |2 Crossref |u ALPIDE Operations Manual (2016). http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-operations-manual-version-0_3.pdf |
999 | C | 5 | |a 10.1088/1748-0221/18/05/P05007 |9 -- missing cx lookup -- |2 Crossref |u A. Santra, N. Tal Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. JINST 18, P05007 (2023). https://doi.org/10.1088/1748-0221/18/05/P05007. arXiv: 2209.03457 [physics.ins-det] |
999 | C | 5 | |a 10.1016/S0168-9002(03)01368-8 |9 -- missing cx lookup -- |1 S Agostinelli |p 250 - |2 Crossref |u S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instr. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8 |t Nucl. Instr. Methods A |v 506 |y 2003 |
999 | C | 5 | |2 Crossref |u H. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022) |
999 | C | 5 | |a 10.1016/j.nima.2018.06.020 |9 -- missing cx lookup -- |1 S Spannagel |p 164 - |2 Crossref |u S. Spannagel et al., Allpix2: a modular simulation framework for silicon detectors. Nucl. Instr. Methods A 901, 164 (2018). https://doi.org/10.1016/j.nima.2018.06.020 |t Nucl. Instr. Methods A |v 901 |y 2018 |
999 | C | 5 | |a 10.1016/j.nima.2019.162882 |1 M Šuljić |9 -- missing cx lookup -- |2 Crossref |u M. Šuljić, P. Camerini, J.W. van Hoorne, Monte Carlo simulation of charge collection processes in Monolithic Active Pixel Sensors for the ALICE ITS upgrade. Nucl. Instr. Methods A 950, 162882 (2020). https://doi.org/10.1016/j.nima.2019.162882 |t Nucl. Instr. Methods A |v 950 |y 2020 |
999 | C | 5 | |a 10.1088/1748-0221/9/09/P09009 |9 -- missing cx lookup -- |2 Crossref |u The ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector. JINST 9, P09009 (2014). https://doi.org/10.1088/1748-0221/9/09/P09009 |
999 | C | 5 | |a 10.1016/0168-9002(90)91835-Y |9 -- missing cx lookup -- |1 P Billoir |p 219 - |2 Crossref |u P. Billoir, S. Qian, Simultaneous pattern recognition and track fitting by the Kalman filtering method. Nucl. Instr. Methods A 294, 219 (1990). https://doi.org/10.1016/0168-9002(90)91835-Y |t Nucl. Instr. Methods A |v 294 |y 1990 |
999 | C | 5 | |a 10.1016/j.nima.2020.163784 |9 -- missing cx lookup -- |2 Crossref |u D. Dannheim et al., Combining TCAD and Monte Carlo Methods to simulate CMOS pixel sensors with a small collection electrode using the Allpix$$^2$$ squared framework. Nucl. Instr. Methods A 964, 163784 (2020). https://doi.org/10.1016/j.nima.2020.163784. arXiv: 2002.12602 [physics.ins-det] |
999 | C | 5 | |a 10.1088/1748-0221/14/10/p10033 |9 -- missing cx lookup -- |1 Y Liu |p P10033 - |2 Crossref |u Y. Liu et al., EUDAQ2—a flexible data acquisition software framework for common test beams. JINST 14, P10033 (2019). https://doi.org/10.1088/1748-0221/14/10/p10033 |t JINST |v 14 |y 2019 |
999 | C | 5 | |a 10.1088/1748-0221/14/09/p09019 |9 -- missing cx lookup -- |1 P Baesso |p P09019 - |2 Crossref |u P. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/p09019 |t JINST |v 14 |y 2019 |
999 | C | 5 | |a 10.1109/TNS.2019.2945234 |9 -- missing cx lookup -- |1 S Kushpil |p 2319 - |2 Crossref |u S. Kushpil, F. Krizek, A. Isakov, Recent results from beam tests of the ALPIDE Pixel chip for the upgrade of the ALICE Inner Tracker. IEEE Trans. Nucl. Sci. 66, 2319 (2019). https://doi.org/10.1109/TNS.2019.2945234 |t IEEE Trans. Nucl. Sci. |v 66 |y 2019 |
999 | C | 5 | |2 Crossref |u H. Abramowicz et al., Forward instrumentation for ILC detectors. JINST 5, P12002 (2010). arXiv: 1009.2433 [physics.ins-det] |
999 | C | 5 | |2 Crossref |u H. Abramowicz et al., Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam. Eur. Phys. J. C 79, 579 (2019). arXiv:1812.11426 [physics.ins-det] |
999 | C | 5 | |a 10.1016/j.nima.2019.162969 |9 -- missing cx lookup -- |2 Crossref |u K. Kawagoe et al., Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. Nucl. Instr. Methods A 950, 162969 (2020). https://doi.org/10.1016/j.nima.2019.162969. arXiv:1902.00110 [physics.ins-det] |
999 | C | 5 | |2 Crossref |u A. Hartin, Private communication |
999 | C | 5 | |2 Crossref |u J. Moron, FLAME SoC readout ASIC for electromagnetic calorimeter, September 19–23 (2022). https://indico.cern.ch/event/1127562/contributions/4904506/attachments/2512388/4318796/moron_TWEPP_2022_09_21.pdf |
999 | C | 5 | |2 Crossref |u M. Idzik, The FLAME and FLAXE ASICs, June 12–16 (2023). https://agenda.infn.it/event/36206/contributions/202659/attachments/106949/150868/idzik_FEE_2023_06_FLAME.pdf |
999 | C | 5 | |a 10.1088/1748-0221/15/01/P01038 |9 -- missing cx lookup -- |2 Crossref |u P. Ahlburg et al., EUDAQ—a data acquisition software framework for common beam telescopes. JINST 15, P01038 (2020). https://doi.org/10.1088/1748-0221/15/01/P01038. arXiv:1909.13725 [physics.ins-det] |
999 | C | 5 | |a 10.1088/1748-0221/6/12/C12040 |9 -- missing cx lookup -- |1 S Callier |p C12040 - |2 Crossref |u S. Callier et al., SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC. JINST 6, C12040 (2011). https://doi.org/10.1088/1748-0221/6/12/C12040 |t JINST |v 6 |y 2011 |
999 | C | 5 | |2 Crossref |u O. Novgorodova, Characterisation and Application of Radiation Hard Sensors for LHC and ILC. PhD thesis: Brandenburg Tech. U. (2013) |
999 | C | 5 | |2 Crossref |u M. Shchedrolosiev, Optimization of an electromagnetic calorimeter for the LUXE experiment, Taras Shevchenko National University of Kyiv, Faculty of Nuclear Physics (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55608/main_eng.pdf |
999 | C | 5 | |2 Crossref |u S. Takada et al., Characteristic study of silicon sensor for ILD ECAL (2015). arXiv:1503.09050 [hep-ex] |
999 | C | 5 | |2 Crossref |u H. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022) |
999 | C | 5 | |a 10.1063/5.0090514 |1 E Kroupp |9 -- missing cx lookup -- |2 Crossref |u E. Kroupp et al., Commissioning and first results from the new 2 Õ 100 TW laser at the WIS. Matter Radiat. Extremes 7, 044401 (2022). https://doi.org/10.1063/5.0090514 |t Matter Radiat. Extremes |v 7 |y 2022 |
999 | C | 5 | |a 10.1016/j.nima.2021.165555 |9 -- missing cx lookup -- |2 Crossref |u M. Berggren et al., Kinematic edge detection using finite impulse response filters (2020). arXiv:2012.11415 [hep-ex] |
999 | C | 5 | |2 Crossref |u Basler AG, Basler Area Scan Camera Range (2021). https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ |
999 | C | 5 | |2 Crossref |u Edmund Optics, 543 nm CWL, 50 mm Dia, 22 nm Bandwidth, OD 6 Fluorescence Filter (2021). https://www.edmundoptics.com/p/543nm-cwl-50mm-dia-22nm-bandwidth-od-6-fluorescence-filter/21586/ |
999 | C | 5 | |2 Crossref |u Basler AG, Basler acA1920-40gm, Camera Specification, Document Number: BD000940, version v01 (2021). https://www.baslerweb.com/fp-1489067421/media/downloads/documents/emva_data/BD00094001_Basler_acA1920-40gm_EMVA_Standard_1288.pdf |
999 | C | 5 | |2 Crossref |u Basler AG, Basler acA4096-11gm, Camera Specification, Document Number: BD001167, version v01 (2021). https://www.baslerweb.com/fp-1520251824/media/downloads/documents/emva_data/BD00116701_Basler_acA4096-11gm_EMVA_Standard_1288.pdf |
999 | C | 5 | |2 Crossref |u F. Keeble, Measurement of the electron energy distribution at AWAKE, PhD thesis: University College London (2019) |
999 | C | 5 | |a 10.1038/s41586-018-0485-4 |9 -- missing cx lookup -- |1 E Adli |p 363 - |2 Crossref |u E. Adli et al., Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363 (2018). https://doi.org/10.1038/s41586-018-0485-4 |t Nature |v 561 |y 2018 |
999 | C | 5 | |2 Crossref |u D. Lipka et al., Dark Current Monitor for the European XFEL, in 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Hamburg (Germany), 16 May 2011–18 May 2011, JACoW (2011). https://bib-pubdb1.desy.de/record/90975 |
999 | C | 5 | |2 Crossref |u Edmund Optics, Green M34.0 x 0.50 High Performance Machine Vision Filter (2021). https://www.edmundoptics.com/p/green-m340-x-050-machine-vision-filter/32224/ |
999 | C | 5 | |2 Crossref |u MCIO Optonix, DRZ Screens (2021). http://www.mcio.com/Products/drz-screens.aspx |
999 | C | 5 | |a 10.1088/0960-1317/19/1/015014 |1 ID Jung |9 -- missing cx lookup -- |2 Crossref |u I.D. Jung et al., Flexible Gd2O2S: Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors. J. Micromech. Microeng. 19, 015014 (2008). https://doi.org/10.1088/0960-1317/19/1/015014 |t J. Micromech. Microeng. |v 19 |y 2008 |
999 | C | 5 | |2 Crossref |u Mitsubishi Chemical (2021). www.m-chemical.co.jp/en/products/departments/mcc/ledmat/product/1201037_7550.html |
999 | C | 5 | |a 10.1016/S0022-2313(96)00330-4 |9 -- missing cx lookup -- |1 R Morlotti |p 772 - |2 Crossref |u R. Morlotti et al., Intrinsic conversion efficiency of X-rays to light in Gd2O2S: Tb3+ powder phosphors. J. Lumin. 72–74, 772 (1997). https://doi.org/10.1016/S0022-2313(96)00330-4 |t J. Lumin. |v 72–74 |y 1997 |
999 | C | 5 | |2 Crossref |u El-Mul Technologies Ltd., ScintiMax Data Sheet |
999 | C | 5 | |2 Crossref |u Phosphor Technology, X-Ray Phosphors (2021). https://www.phosphor-technology.com/x-ray-phosphors/ |
999 | C | 5 | |a 10.1016/j.nima.2019.05.067 |9 -- missing cx lookup -- |2 Crossref |u J. Bauche et al., A magnetic spectrometer to measure electron bunches accelerated at AWAKE. Nucl. Instr. Methods A 940, 103 (2019). https://doi.org/10.1016/j.nima.2019.05.067 |
999 | C | 5 | |2 Crossref |u Basler AG, Basler Product Documentation, acA1920-40gm (2021). https://docs.baslerweb.com/aca1920-40gm |
999 | C | 5 | |2 Crossref |u Basler AG, Basler Product Documentation, acA4096-11gm (2021). https://docs.baslerweb.com/aca4096-11gm |
999 | C | 5 | |2 Crossref |u Edmund Optics, Edmund 75mm DG Series Fixed Focal Length Lens (2021). https://www.edmundoptics.co.uk/p/75mm-dg-series-fixed-focal-length-lens/11371/ |
999 | C | 5 | |2 Crossref |u Basler AG, Basler Lens C11-5020-12M-P f50mm-Lens (2021). https://docs.baslerweb.com/c11-5020-12m-p |
999 | C | 5 | |2 Crossref |u Edmund Optics, 0.5 OD 25mm Diameter Reflective ND Filter (2022). https://www.https://www.edmundoptics.com/p/05-od-25mm-diameter-reflective-nd-filter/1932/ |
999 | C | 5 | |2 Crossref |u Basler AG (2022). https://www.baslerweb.com/en/products/software/basler-pylon-camera-software-suite/ |
999 | C | 5 | |2 Crossref |u Basler AG (2021). docs.baslerweb.com/io-timing-characteristics-(ace-ace-2-boost) |
999 | C | 5 | |2 Crossref |u Advanced Illumination/Edmund Optics, 100 x 100 mm, 520 nm, LED Backlight (2022). https://www.edmundoptics.de/p/100-x-100mm-520nm-led-backlight/21339/ |
999 | C | 5 | |a 10.1016/j.fusengdes.2017.03.167 |9 -- missing cx lookup -- |2 Crossref |u A. Huber et al., Response of the imaging cameras to hard radiation during JET operation. Fusion Eng. Design 123, 669 (2017). Proceedings of the 29th symposium on fusion technology (SOFT-29) Prague, September 5–9, 2016. https://doi.org/10.1016/j.fusengdes.2017.03.167 |
999 | C | 5 | |2 Crossref |u B. Heinemann, B. King, Chapter 2: Overview and Scientific Objectives, this report (2022) |
999 | C | 5 | |2 Crossref |u DESY Radiation Protection Group (2020). https://d3.desy.de/index_eng.html |
999 | C | 5 | |a 10.1016/j.nima.2018.11.133 |9 -- missing cx lookup -- |1 R Diener |p 265 - |2 Crossref |u R. Diener et al., The DESY II test beam facility. Nucl. Instr. Methods A 922, 265 (2019). https://doi.org/10.1016/j.nima.2018.11.133 |t Nucl. Instr. Methods A |v 922 |y 2019 |
999 | C | 5 | |a 10.18429/JACoW-IPAC2019-MOPTS054 |9 -- missing cx lookup -- |2 Crossref |u K. Sjobak et al., Status of the CLEAR electron beam user facility at CERN, MOPTS054, p. 4 (2019). https://doi.org/10.18429/JACoW-IPAC2019-MOPTS054. https://cds.cern.ch/record/2695092 |
999 | C | 5 | |2 Crossref |u ELBE Linac, The Superconducting Electron Linear Accelerator (2021). https://www.hzdr.de/db/Cms?pNid=584 |
999 | C | 5 | |a 10.3367/UFNr.0093.196710o.0388 |9 -- missing cx lookup -- |1 IM Frank |p 109 - |2 Crossref |u I.M. Frank, I.E. Tamm, Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS 14, 109 (1937). https://doi.org/10.3367/UFNr.0093.196710o.0388 |t Compt. Rend. Acad. Sci. URSS |v 14 |y 1937 |
999 | C | 5 | |a 10.1364/AO.35.001566 |9 -- missing cx lookup -- |1 PE Ciddor |p 1566 - |2 Crossref |u P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566 (1996) |t Appl. Opt. |v 35 |y 1996 |
999 | C | 5 | |a 10.1088/0026-1394/2/2/002 |9 -- missing cx lookup -- |1 B Edlén |p 71 - |2 Crossref |u B. Edlén, The refractive index of air. Metrologia 2, 71 (1966). https://doi.org/10.1088/0026-1394/2/2/002 |t Metrologia |v 2 |y 1966 |
999 | C | 5 | |2 Crossref |u J.A. Stone, J.H. Zimmerman, NIST Engineering Metrology Tool Box: Index of Refraction of Air (2022). https://emtoolbox.nist.gov/Main/Main.asp |
999 | C | 5 | |2 Crossref |u ATLAS inner detector: Technical Design Report, 1, Technical design report. ATLAS, CERN, Geneva (1997). https://cds.cern.ch/record/331063 |
999 | C | 5 | |2 Crossref |u F. Hahn et al., NA62: Technical Design Document, tech. rep., CERN (2010). https://cds.cern.ch/record/1404985 |
999 | C | 5 | |a 10.1088/1748-0221/7/01/P01019 |9 -- missing cx lookup -- |2 Crossref |u C. Bartels et al., Design and construction of a cherenkov detector for compton polarimetry at the ILC. JINST 7, P01019 (2012). arXiv: 1011.6314 [physics.ins-det] |
999 | C | 5 | |a 10.1016/j.anucene.2017.12.024 |9 -- missing cx lookup -- |1 G Bentoumi |p 86 - |2 Crossref |u G. Bentoumi et al., Reactor power monitoring using Cherenkov radiation transmitted through a small-bore metallic tube. Ann. Nucl. Energy 114, 86 (2018). https://doi.org/10.1016/j.anucene.2017.12.024 |t Ann. Nucl. Energy |v 114 |y 2018 |
999 | C | 5 | |2 Crossref |u F. Burkart et al., The ares Linac at Desy (2022) |
999 | C | 5 | |2 Crossref |u S. Meuren, Probing Strong-field QED at FACET-II (SLAC E-320), Talk presented at FACET-II Science Workshop 2019 (2019). https://conf.slac.stanford.edu/facet-2-2019/sites/facet-2-2019.conf.slac.stanford.edu/files/basic-page-docs/sfqed_2019.pdf |
999 | C | 5 | |2 Crossref |u O. Semiconductor, J-Series SiPM Sensors (2021). https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf |
999 | C | 5 | |2 Crossref |u Hamamatsu, S5344 Si APD (2021). https://www.hamamatsu.com/resources/pdf/ssd/s12053-02_etc_kapd1001e.pdf |
999 | C | 5 | |2 Crossref |u S. Collaboration, SHiP Experiment—Comprehensive Design Study report, tech. rep., CERN (2019). https://cds.cern.ch/record/2704147 |
999 | C | 5 | |2 Crossref |u CAEN, DT5702 32 Channel SiPM Readout Board (2022). https://www.caen.it/products/dt5702/ |
999 | C | 5 | |2 Crossref |u CAEN, DT5550W Complete Readout System based on Weeroc ASIC (2022). https://www.caen.it/products/dt5550w/ |
999 | C | 5 | |a 10.1109/NSSMIC.2011.6154596 |9 -- missing cx lookup -- |2 Crossref |u M. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium Conference Record, p. 1171 (2011) |
999 | C | 5 | |2 Crossref |u B. Vormwald, From Neutrino Physics to Beam Polarisation—a High Precision Story at the ILC, University of Hamburg, Diss., Dr. University of Hamburg (2014). https://bib-pubdb1.desy.de/record/168227 |
999 | C | 5 | |2 Crossref |u CAEN, A7585 1 Ch. +85 V/10 mA Digital Controlled SiPM Power Supply (2022). https://www.caen.it/products/a7585/ |
999 | C | 5 | |a 10.1038/s41598-020-66832-x |9 -- missing cx lookup -- |1 K Fleck |p 9894 - |2 Crossref |u K. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020). https://doi.org/10.1038/s41598-020-66832-x |t Sci. Rep. |v 10 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevLett.113.224801 |1 G Sarri |9 -- missing cx lookup -- |2 Crossref |u G. Sarri et al., Ultrahigh brilliance multi-MeV $$\gamma$$-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801 |t Phys. Rev. Lett. |v 113 |y 2014 |
999 | C | 5 | |a 10.1063/1.4875336 |1 W Schumaker |9 -- missing cx lookup -- |2 Crossref |u W. Schumaker et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). https://doi.org/10.1063/1.4875336 |t Phys. Plasmas |v 21 |y 2014 |
999 | C | 5 | |a 10.1016/j.nima.2015.06.012 |9 -- missing cx lookup -- |1 F Barbosa |p 376 - |2 Crossref |u F. Barbosa et al., Pair spectrometer hodoscope for Hall D at Jefferson Lab. Nucl. Instr. Methods A 795, 376 (2015). https://doi.org/10.1016/j.nima.2015.06.012 |t Nucl. Instr. Methods A |v 795 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-018-03165-4 |1 TN Wistisen |9 -- missing cx lookup -- |2 Crossref |u T.N. Wistisen et al., Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-03165-4 |t Nat. Commun. |y 2018 |
999 | C | 5 | |a 10.1063/1.5056248 |1 K Behm |9 -- missing cx lookup -- |2 Crossref |u K. Behm et al., A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 113303 (2018). https://doi.org/10.1063/1.5056248 |t Rev. Sci. Instrum. |v 89 |y 2018 |
999 | C | 5 | |a 10.1063/1.4884643 |1 D Corvan |9 -- missing cx lookup -- |2 Crossref |u D. Corvan, G. Sarri, M. Zepf, Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum. 85, 065119 (2014). https://doi.org/10.1063/1.4884643 |t Rev. Sci. Instrum. |v 85 |y 2014 |
999 | C | 5 | |a 10.1088/1742-6596/763/1/012011 |1 J McMillan |9 -- missing cx lookup -- |2 Crossref |u J. McMillan et al., Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays. J. Phys. 763, 012011 (2016). https://doi.org/10.1088/1742-6596/763/1/012011 |t J. Phys. |v 763 |y 2016 |
999 | C | 5 | |a 10.1016/S0168-9002(96)00793-0 |9 -- missing cx lookup -- |1 M Wilhelm |p 462 - |2 Crossref |u M. Wilhelm et al., The response of the Euroball Cluster detector to $$\gamma$$-radiation up to 10 MeV. Nucl. Instr. Methods A 381, 462 (1996). https://doi.org/10.1016/S0168-9002(96)00793-0 |t Nucl. Instr. Methods A |v 381 |y 1996 |
999 | C | 5 | |a 10.1016/j.nima.2005.11.067 |9 -- missing cx lookup -- |1 M Lipoglavšek |p 523 - |2 Crossref |u M. Lipoglavšek et al., Measuring high-energy $$\gamma$$-rays with Ge clover detectors. Nucl. Instr. Methods A 557, 523 (2006). https://doi.org/10.1016/j.nima.2005.11.067 |t Nucl. Instr. Methods A |v 557 |y 2006 |
999 | C | 5 | |a 10.1088/0031-9155/47/8/201 |9 -- missing cx lookup -- |1 C van Eijk |p R85 - |2 Crossref |u C. van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85 (2002). https://doi.org/10.1088/0031-9155/47/8/201 |t Phys. Med. Biol. |v 47 |y 2002 |
999 | C | 5 | |a 10.1016/B978-0-08-010586-4.50061-4 |9 -- missing cx lookup -- |2 Crossref |u L. Landau, 56—On The Energy Loss Of Fast Particles By Ionization, Collected Papers of L.D. Landau, ed. by D. Ter Haar, Pergamon, p. 417 (1965). https://www.sciencedirect.com/science/article/pii/B9780080105864500614 |
999 | C | 5 | |a 10.1103/revmodphys.60.663 |9 -- missing cx lookup -- |1 H Bichsel |p 663 - |2 Crossref |u H. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys. 60, 663 (1988). https://doi.org/10.1103/revmodphys.60.663 |t Rev. Mod. Phys. |v 60 |y 1988 |
999 | C | 5 | |a 10.1093/ptep/ptac097 |9 -- missing cx lookup -- |2 Crossref |u Particle Data Group, R. Workman et al., Review of particle physics. Progr. Theor. Exp. Phys. 549, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097. https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434166/ptac097.pdf |
999 | C | 5 | |a 10.1016/0010-4655(84)90085-7 |9 -- missing cx lookup -- |1 K Kölbig |p 97 - |2 Crossref |u K. Kölbig, B. Schorr, A program package for the Landau distribution. Comput. Phys. Commun. 31, 97 (1984). https://doi.org/10.1016/0010-4655(84)90085-7 |t Comput. Phys. Commun. |v 31 |y 1984 |
999 | C | 5 | |a 10.1016/j.radphyschem.2005.09.005 |9 -- missing cx lookup -- |1 S Klein |p 696 - |2 Crossref |u S. Klein, Pair production from 10 GeV to 10 ZeV. Radiat. Phys. Chem. 75, 696 (2006). https://doi.org/10.1016/j.radphyschem.2005.09.005 |t Radiat. Phys. Chem. |v 75 |y 2006 |
999 | C | 5 | |1 W Press |y 2007 |2 Crossref |u W. Press et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007) |t Numerical Recipes 3rd Edition: The Art of Scientific Computing |
999 | C | 5 | |1 M Piana |y 1994 |2 Crossref |u M. Piana, Inversion of bremsstrahlung spectra emitted by solar plasma. AAP 288, 949 (1994) |
999 | C | 5 | |a 10.1109/ICASSP.1993.319857 |9 -- missing cx lookup -- |2 Crossref |u A. Mohammad-Djafari, On the estimation of hyperparameters in Bayesian approach of solving inverse problems, in 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, p. 495 (1993) |
999 | C | 5 | |a 10.1007/978-94-011-5430-7_16 |9 -- missing cx lookup -- |2 Crossref |u A. Mohammad-Djafari, A full Bayesian approach for inverse problems, in Maximum Entropy and Bayesian Methods, ed. by K.M. Hanson and R.N. Silver (Springer Netherlands, Dordrecht, 1996), p. 135 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.23.064001 |9 -- missing cx lookup -- |2 Crossref |u T.G. Blackburn et al., Model-independent inference of laser intensity. Phys. Rev. Accel. Beams 23, 064001 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.064001. arXiv:1911.02349 |
999 | C | 5 | |a 10.1088/1748-0221/10/08/P08008 |9 -- missing cx lookup -- |1 O Karacheban |p P08008 - |2 Crossref |u O. Karacheban et al., Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II. JINST 10, P08008 (2015). https://doi.org/10.1088/1748-0221/10/08/P08008. arXiv:1504.04023 [physics.ins-det] |t JINST |v 10 |y 2015 |
999 | C | 5 | |2 Crossref |u B. Buonomo et al., A wide range electrons, photons, neutrons beam facility, in Proceedings of EPAC08, p. 3321 (2008) |
999 | C | 5 | |a 10.1103/PhysRevA.110.023510 |9 -- missing cx lookup -- |2 Crossref |u K. Fleck et al., Dependence on laser intensity of the number-weighted angular distribution of Compton-scattered photon beams (2024). arXiv:2402.03454 [physics.plasm-ph] |
999 | C | 5 | |a 10.1063/1.1710367 |9 -- missing cx lookup -- |1 W Shockley |p 635 - |2 Crossref |u W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635 (1938). https://doi.org/10.1063/1.1710367 |t J. Appl. Phys. |v 9 |y 1938 |
999 | C | 5 | |2 Crossref |u CAEN company FERS-5200 Front-End Readout System, https://www.caen.it/subfamilies/fers-5200 |
999 | C | 5 | |2 Crossref |u CAEN User Manual UM7945, https://www.caen.it/?downloadfile=6184 |
999 | C | 5 | |2 Crossref |u WEEROC company, http://www.weeroc.com/en/products/citiroc |
999 | C | 5 | |2 Crossref |u CAEN company SY5527 Universal Multichannel Power Supply System, https://www.caen.it/products/sy5527/, https://www.caen.it/products/a2519/, https://www.caen.it/products/a1561h/ |
999 | C | 5 | |2 Crossref |u B. Dudar, MSc. Thesis (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55607/TSNUK_NPD_master_eng.pdf |
999 | C | 5 | |a 10.1016/S0168-9002(97)01079-6 |9 -- missing cx lookup -- |1 J Altegoer |p 96 - |2 Crossref |u J. Altegoer et al., The NOMAD experiment at the CERN SPS. Nucl. Instrum. Methods A 404, 96 (1998). https://doi.org/10.1016/S0168-9002(97)01079-6 |t Nucl. Instrum. Methods A |v 404 |y 1998 |
999 | C | 5 | |a 10.1016/0168-9002(91)90547-4 |9 -- missing cx lookup -- |1 K Ahmet |p 275 - |2 Crossref |u K. Ahmet et al., The OPAL detector at LEP. Nucl. Instrum. Methods A 305, 275 (1991). https://doi.org/10.1016/0168-9002(91)90547-4 |t Nucl. Instrum. Methods A |v 305 |y 1991 |
999 | C | 5 | |a 10.1016/S0168-9002(98)00540-3 |9 -- missing cx lookup -- |1 H Avakian |p 69 - |2 Crossref |u H. Avakian et al., Performance of the electromagnetic calorimeter of the HERMES experiment. Nucl. Instrum. Methods A 417, 69 (1998). https://doi.org/10.1016/S0168-9002(98)00540-3. arXiv: hep-ex/9810004 |t Nucl. Instrum. Methods A |v 417 |y 1998 |
999 | C | 5 | |a 10.1016/0168-9002(94)90990-3 |9 -- missing cx lookup -- |1 M Kobayashi |p 210 - |2 Crossref |u M. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101. Nucl. Instrum. Methods A 345, 210 (1994) |t Nucl. Instrum. Methods A |v 345 |y 1994 |
999 | C | 5 | |a 10.1016/0168-9002(94)90990-3 |9 -- missing cx lookup -- |2 Crossref |u M. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101, tech. rep., KEK (1993). https://cds.cern.ch/record/259413 |
999 | C | 5 | |a 10.1016/0167-5087(83)91296-6 |9 -- missing cx lookup -- |1 AV Inyakin |p 103 - |2 Crossref |u A.V. Inyakin et al., Investigation of the characteristics of lead glass $$\gamma$$ spectrometer radiators irradiated by high-energy particles. Nucl. Instrum. Methods 215, 103 (1983). https://doi.org/10.1016/0167-5087(83)91296-6 |t Nucl. Instrum. Methods |v 215 |y 1983 |
999 | C | 5 | |a 10.1016/j.nima.2005.01.328 |9 -- missing cx lookup -- |1 MY Balatz |p 114 - |2 Crossref |u M.Y. Balatz et al., The lead-glass electromagnetic calorimeter for the SELEX experiment. Nucl. Instrum. Methods A 545, 114 (2005). https://doi.org/10.1016/j.nima.2005.01.328 |t Nucl. Instrum. Methods A |v 545 |y 2005 |
999 | C | 5 | |a 10.1088/1748-0221/3/08/S08004 |9 -- missing cx lookup -- |1 S Chatrchyan |p S08004 - |2 Crossref |u S. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004 |t JINST |v 3 |y 2008 |
999 | C | 5 | |a 10.1088/1748-0221/9/08/C08012 |9 -- missing cx lookup -- |1 B Vormwald |p C08012 - |2 Crossref |u B. Vormwald, Polarisation and beam energy measurement at a linear $$e^+e^-$$ collider. JINST 9, C08012 (2014). https://doi.org/10.1088/1748-0221/9/08/C08012 |t JINST |v 9 |y 2014 |
999 | C | 5 | |a 10.1109/NSSMIC.2011.6154596 |9 -- missing cx lookup -- |2 Crossref |u M. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, p. 1171 (2011) |
999 | C | 5 | |2 Crossref |u LEDTRONICS, Datasheet SML0603-395-TR |
999 | C | 5 | |2 Crossref |u LUXE simulation software, (2021). https://github.com/LUXEsoftware/lxsim |
999 | C | 5 | |a 10.1103/PhysRevD.98.030001 |1 M Tanabashi |9 -- missing cx lookup -- |2 Crossref |u M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018) |t Phys. Rev. D |v 98 |y 2018 |
999 | C | 5 | |a 10.1088/1748-0221/14/09/P09019 |9 -- missing cx lookup -- |1 P Baesso |p P09019 - |2 Crossref |u P. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/P09019. arXiv: 2005.00310 [physics.ins-det] |t JINST |v 14 |y 2019 |
999 | C | 5 | |2 Crossref |u TLU documentation, (2019). https://ohwr.org/project/fmc-mtlu |
999 | C | 5 | |a 10.1016/j.nima.2019.04.097 |9 -- missing cx lookup -- |2 Crossref |u D. Cussans, Timing and synchronization of the DUNE neutrino detector. Nucl. Instr. Methods A 958, 162143 (2020). https://doi.org/10.1016/j.nima.2019.04.097 |
999 | C | 5 | |2 Crossref |u EUDAQ2 documentation, (2020). https://eudaq.github.io |
999 | C | 5 | |2 Crossref |u E. Sombrowski et al., “jddd”: a Java DOOCS Data Display for the XFEL, in International Conference on Accelerator and Large Experimental Physics Control Systems, Knoxville. JACoW, Knoxville, p. 43 (2007). https://bib-pubdb1.desy.de/record/82503 |
999 | C | 5 | |2 Crossref |u R. Abela et al., XFEL: the European X-Ray Free-Electron Laser—Technical Design Report. DESY, Hamburg, p. 1 (2006). https://bib-pubdb1.desy.de/record/77248 |
999 | C | 5 | |2 Crossref |u F. Burkart, W. Decking, Extraction and XTD20 Transfer Line: Conceptual Design Report |
999 | C | 5 | |a 10.5281/zenodo.4008390 |9 -- missing cx lookup -- |2 Crossref |u K. Sloan et al., KeithSloan/GDML: 1.3 Alpha, version v1.3alpha (2020). https://doi.org/10.5281/zenodo.4008390 |
999 | C | 5 | |2 Crossref |u D. Nölle, Electron beam diagnostics for the European XFEL, in Proceedings of DIPAC09, Basel, TUOA04 (2009). https://accelconf.web.cern.ch/d09/papers/tuoa04.pdf |
999 | C | 5 | |2 Crossref |u B. Keil et al., The European XFEL Beam Position Monitor System, in Proceedings of IPAC’10, Kyoto, MOPE064 (2010). http://accelconf.web.cern.ch/IPAC10/papers/mope064.pdf |
999 | C | 5 | |2 Crossref |u L. Deniau et al., Upgrade of MAD-X for HL-LHC Project and FCC studies, in JACOW Proceedings of the 13th International Computational Accelerator Physics Conference ICAP2018, p. 2018 (2018) |
999 | C | 5 | |a 10.1016/j.cpc.2020.107200 |9 -- missing cx lookup -- |2 Crossref |u L.J. Nevay et al., BDSIM: an accelerator tracking code with particle-matter interactions. Comput. Phys. Commun. 252, 107200 (2020). https://doi.org/10.1016/j.cpc.2020.107200. arXiv:1808.10745 [physics.comp-ph] |
999 | C | 5 | |2 Crossref |u https://flash.desy.de/ |
999 | C | 5 | |a 10.1016/j.nds.2014.07.049 |9 -- missing cx lookup -- |1 TT Böhlen |p 211 - |2 Crossref |u T.T. Böhlen et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014) |t Nucl. Data Sheets |v 120 |y 2014 |
999 | C | 5 | |a 10.1088/1748-0221/8/09/T09001 |9 -- missing cx lookup -- |1 R Bähre |p T09001 - |2 Crossref |u R. Bähre et al., Any light particle search II—Technical Design Report. JINST 8, T09001 (2013). https://doi.org/10.1088/1748-0221/8/09/T09001. arXiv:1302.5647 [physics.ins-det] |t JINST |v 8 |y 2013 |
999 | C | 5 | |2 Crossref |u Berthold, https://www.berthold.com, https://www.berthold.com/?eID=dumpFile &t=f &download=1 &logInUri=%2Fen%2Fmyberthold%2F &f=1094 &token=4aabc03604542ee462e31bc841b59febee612d4c |
999 | C | 5 | |a 10.1016/j.jnucmat.2014.05.010 |9 -- missing cx lookup -- |1 S Park |p 205 - |2 Crossref |u S. Park, J. Jang, H. Lee, Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate. J. Nucl. Mater. 452, 205 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.010 |t J. Nucl. Mater. |v 452 |y 2014 |
999 | C | 5 | |2 Crossref |u O. Borysov, Radiation dose for tracker electronics in the rack, https://indico.desy.de/event/33847/contributions/119752/attachments/72415/92841/background_sim_pcb_dose_21032022.pdf |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|