000605052 001__ 605052 000605052 005__ 20250723171629.0 000605052 0247_ $$2doi$$a10.1140/epjs/s11734-024-01164-9 000605052 0247_ $$2arXiv$$aarXiv:2308.00515 000605052 0247_ $$2WOS$$aWOS:001324531100003 000605052 0247_ $$2altmetric$$aaltmetric:169261578 000605052 0247_ $$2openalex$$aopenalex:W4403050980 000605052 037__ $$aPUBDB-2024-01310 000605052 041__ $$aEnglish 000605052 082__ $$a530 000605052 088__ $$2DESY$$aDESY-24-048 000605052 088__ $$2arXiv$$aarXiv:2308.00515 000605052 1001_ $$0P:(DE-H253)PIP1003003$$aAbramowicz, Halina$$b0 000605052 245__ $$aTechnical Design Report for the LUXE Experiment 000605052 260__ $$aHeidelberg$$bSpringer$$c2024 000605052 3367_ $$2DRIVER$$aarticle 000605052 3367_ $$2DataCite$$aOutput Types/Journal article 000605052 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736240936_1944677 000605052 3367_ $$2BibTeX$$aARTICLE 000605052 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000605052 3367_ $$00$$2EndNote$$aJournal Article 000605052 520__ $$aThis Technical Design Report presents a detailed description of all aspects of the LUXE (Laser Und XFEL Experiment), an experiment that will combine the high-quality and high-energy electron beam of the European XFEL with a high-intensity laser, to explore the uncharted terrain of strong-field quantum electrodynamics characterised by both high energy and high intensity, reaching the Schwinger field and beyond. The further implications for the search of physics beyond the Standard Model are also discussed. 000605052 536__ $$0G:(DE-HGF)POF4-622$$a622 - Detector Technologies and Systems (POF4-622)$$cPOF4-622$$fPOF IV$$x0 000605052 542__ $$2Crossref$$i2024-10-01$$uhttps://creativecommons.org/licenses/by/4.0 000605052 542__ $$2Crossref$$i2024-10-02$$uhttps://creativecommons.org/licenses/by/4.0 000605052 588__ $$aDataset connected to DataCite 000605052 650_7 $$2Other$$aenergy, high 000605052 650_7 $$2Other$$aelectron, beam 000605052 650_7 $$2Other$$aquantum electrodynamics, strong field 000605052 650_7 $$2Other$$alaser 000605052 650_7 $$2Other$$anew physics 000605052 693__ $$0EXP:(DE-H253)LUXE-20220501$$5EXP:(DE-H253)LUXE-20220501$$eLaser Und XFEL Experiment$$x0 000605052 7001_ $$0P:(DE-HGF)0$$aSoto, M. Almanza$$b1 000605052 7001_ $$0P:(DE-H253)PIP1017739$$aAssmann, Ralph$$b2 000605052 7001_ $$0P:(DE-H253)PIP1103471$$aAthanassiadis, Antonios$$b3 000605052 7001_ $$0P:(DE-HGF)0$$aAvoni, G.$$b4 000605052 7001_ $$0P:(DE-H253)PIP1003157$$aBehnke, Ties$$b5 000605052 7001_ $$0P:(DE-HGF)0$$aBenettoni, M.$$b6 000605052 7001_ $$0P:(DE-H253)PIP1027710$$aBenhammou, Yan$$b7 000605052 7001_ $$0P:(DE-H253)PIP1103864$$aBhatt, Jayesh$$b8 000605052 7001_ $$0P:(DE-H253)PIP1094409$$aBlackburn, Thomas$$b9 000605052 7001_ $$0P:(DE-HGF)0$$aBlanch, C.$$b10 000605052 7001_ $$0P:(DE-HGF)0$$aBonaldo, S.$$b11 000605052 7001_ $$0P:(DE-H253)PIP1032082$$aBoogert, Stewart$$b12 000605052 7001_ $$0P:(DE-H253)PIP1027706$$aBorysov, Oleksandr$$b13 000605052 7001_ $$0P:(DE-H253)PIP1086957$$aBorysova, Maryna$$b14 000605052 7001_ $$0P:(DE-H253)PIP1002829$$aBoudry, Vincent$$b15 000605052 7001_ $$0P:(DE-H253)PIP1089339$$aBreton, Dominique$$b16 000605052 7001_ $$0P:(DE-H253)PIP1002844$$aBrinkmann, Reinhard$$b17 000605052 7001_ $$0P:(DE-H253)PIP1002788$$aBruschi, Marco$$b18 000605052 7001_ $$0P:(DE-H253)PIP1080380$$aBurkart, Florian$$b19 000605052 7001_ $$0P:(DE-H253)PIP1002872$$aBuesser, Karsten$$b20 000605052 7001_ $$0P:(DE-H253)PIP1094411$$aCavanagh, Niall$$b21 000605052 7001_ $$0P:(DE-H253)PIP1002883$$aDal Corso, Flavio$$b22 000605052 7001_ $$0P:(DE-H253)PIP1002733$$aDecking, Winfried$$b23 000605052 7001_ $$0P:(DE-HGF)0$$aDeniaud, M.$$b24 000605052 7001_ $$0P:(DE-HGF)0$$aDiner, O.$$b25 000605052 7001_ $$aDosselli, Umberto$$b26 000605052 7001_ $$0P:(DE-H253)PIP1094892$$aElad, Michal$$b27 000605052 7001_ $$0P:(DE-HGF)0$$aEpshteyn, L.$$b28 000605052 7001_ $$0P:(DE-HGF)0$$aEsperante, D.$$b29 000605052 7001_ $$0P:(DE-H253)PIP1004536$$aFerber, Torben$$b30 000605052 7001_ $$0P:(DE-HGF)0$$aFirlej, M.$$b31 000605052 7001_ $$0P:(DE-HGF)0$$aFiutowski, T.$$b32 000605052 7001_ $$0P:(DE-H253)PIP1094410$$aFleck, Kyle$$b33 000605052 7001_ $$0P:(DE-HGF)0$$aFuster-Martinez, N.$$b34 000605052 7001_ $$0P:(DE-H253)PIP1002528$$aGadow, Karsten$$b35 000605052 7001_ $$0P:(DE-H253)PIP1002530$$aGaede, Frank$$b36 000605052 7001_ $$0P:(DE-H253)PIP1089426$$aGallas, Alexandre$$b37 000605052 7001_ $$0P:(DE-H253)PIP1093035$$aGarcía Cabrera, Héctor$$b38 000605052 7001_ $$0P:(DE-H253)PIP1087051$$aGerstmayr, Elias$$b39 000605052 7001_ $$aGhenescu, Veta$$b40 000605052 7001_ $$0P:(DE-H253)PIP1100386$$aGiorato, Michele$$b41 000605052 7001_ $$0P:(DE-H253)PIP1002576$$aGolubeva, Nina$$b42 000605052 7001_ $$0P:(DE-H253)PIP1023796$$aGrojean, Christophe$$b43 000605052 7001_ $$0P:(DE-H253)PIP1098994$$aGrutta, Pietro$$b44 000605052 7001_ $$0P:(DE-H253)PIP1003381$$aGrzelak, Grzegorz$$b45 000605052 7001_ $$0P:(DE-H253)PIP1091363$$aHallford, John Andrew$$b46 000605052 7001_ $$0P:(DE-H253)PIP1102420$$aHartman, Luca$$b47 000605052 7001_ $$0P:(DE-H253)PIP1030369$$aHeinemann, Beate$$b48 000605052 7001_ $$0P:(DE-H253)PIP1097685$$aHeinzl, Thomas$$b49 000605052 7001_ $$0P:(DE-H253)PIP1088299$$aHelary, Louis$$b50 000605052 7001_ $$0P:(DE-H253)PIP1105888$$aHendriks, Luke Jacobus Hendrikus$$b51 000605052 7001_ $$aHoffmann, Marius$$b52 000605052 7001_ $$aHorn, Alexander$$b53 000605052 7001_ $$0P:(DE-H253)PIP1094891$$aHuang, Shan$$b54 000605052 7001_ $$0P:(DE-H253)PIP1092157$$aHuang, Xinhe$$b55 000605052 7001_ $$0P:(DE-H253)PIP1091171$$aIdzik, Marek$$b56 000605052 7001_ $$0P:(DE-H253)PIP1024692$$aIrles, Adrián$$b57 000605052 7001_ $$0P:(DE-H253)PIP1100286$$aKing, Ben$$b58 000605052 7001_ $$0P:(DE-H253)PIP1102406$$aKlute, Markus$$b59 000605052 7001_ $$0P:(DE-H253)PIP1096813$$aKropf, Annabel$$b60 000605052 7001_ $$0P:(DE-H253)PIP1095554$$aKroupp, Eyal$$b61 000605052 7001_ $$0P:(DE-HGF)0$$aLahno, H.$$b62 000605052 7001_ $$0P:(DE-HGF)0$$aManghi, F. Lasagni$$b63 000605052 7001_ $$0P:(DE-H253)PIP1106347$$aLawhorn, Jay Mathew$$b64 000605052 7001_ $$0P:(DE-HGF)0$$aLevanon, A.$$b65 000605052 7001_ $$0P:(DE-H253)PIP1099214$$aLevi, Gianluca$$b66 000605052 7001_ $$0P:(DE-H253)PIP1108797$$aLevinson, Eli$$b67 000605052 7001_ $$0P:(DE-H253)PIP1027707$$aLevy, Itamar$$b68 000605052 7001_ $$0P:(DE-H253)PIP1086123$$aLiberman, Adam$$b69 000605052 7001_ $$0P:(DE-H253)PIP1002007$$aLiss, Beata$$b70 000605052 7001_ $$0P:(DE-H253)PIP1002008$$aList, Benno$$b71 000605052 7001_ $$0P:(DE-H253)PIP1005630$$aList, Jenny$$b72 000605052 7001_ $$0P:(DE-H253)PIP1003723$$aLohmann, Wolfgang$$b73 000605052 7001_ $$0P:(DE-H253)PIP1089342$$aMaalmi, Jihane$$b74 000605052 7001_ $$0P:(DE-H253)PIP1093201$$aMadlener, Thomas$$b75 000605052 7001_ $$0P:(DE-H253)PIP1031397$$aMalka, Victor$$b76 000605052 7001_ $$0P:(DE-H253)PIP1104707$$aMarsault, Tanguy$$b77 000605052 7001_ $$0P:(DE-HGF)0$$aMattiazzo, S.$$b78 000605052 7001_ $$0P:(DE-H253)PIP1083387$$aMeloni, Federico$$b79 000605052 7001_ $$0P:(DE-HGF)0$$aMiron, D.$$b80 000605052 7001_ $$aMorandin, Mauro$$b81 000605052 7001_ $$0P:(DE-H253)PIP1091146$$aMoron, Jakub$$b82 000605052 7001_ $$0P:(DE-HGF)0$$aNanni, J.$$b83 000605052 7001_ $$0P:(DE-HGF)0$$aNeagu, A. T.$$b84 000605052 7001_ $$0P:(DE-H253)PIP1000470$$aNegodin, Evgueni$$b85 000605052 7001_ $$0P:(DE-HGF)0$$aPaccagnella, A.$$b86 000605052 7001_ $$0P:(DE-HGF)0$$aPantano, D.$$b87 000605052 7001_ $$0P:(DE-HGF)0$$aPietruch, D.$$b88 000605052 7001_ $$0P:(DE-HGF)0$$aPomerantz, I.$$b89 000605052 7001_ $$0P:(DE-H253)PIP1080600$$aPoeschl, Roman$$b90 000605052 7001_ $$0P:(DE-H253)PIP1099137$$aPotlog, Mihai$$b91 000605052 7001_ $$0P:(DE-H253)PIP1089542$$aPrasad, Rajendra$$b92 000605052 7001_ $$0P:(DE-H253)PIP1103200$$aQuishpe, Raquel$$b93 000605052 7001_ $$0P:(DE-H253)PIP1101170$$aRanken, Evan$$b94 000605052 7001_ $$0P:(DE-H253)PIP1001650$$aRingwald, Andreas$$b95 000605052 7001_ $$0P:(DE-HGF)0$$aRoich, A.$$b96 000605052 7001_ $$0P:(DE-HGF)0$$aSalgado, F.$$b97 000605052 7001_ $$0P:(DE-H253)PIP1094412$$aSantra, Arka$$b98 000605052 7001_ $$0P:(DE-H253)PIP1094414$$aSarri, Gianluca$$b99 000605052 7001_ $$0P:(DE-H253)PIP1085480$$aSaevert, Alexander$$b100 000605052 7001_ $$0P:(DE-H253)PIP1001665$$aSbrizzi, Antonio$$b101 000605052 7001_ $$0P:(DE-H253)PIP1001586$$aSchmitt, Stefan$$b102 000605052 7001_ $$0P:(DE-H253)PIP1106252$$aSchulthess, Ivo$$b103 000605052 7001_ $$0P:(DE-H253)PIP1006070$$aSchuwalow, Sergej$$b104 000605052 7001_ $$0P:(DE-H253)PIP1096585$$aSeipt, Daniel$$b105 000605052 7001_ $$0P:(DE-HGF)0$$aSimi, G.$$b106 000605052 7001_ $$0P:(DE-H253)PIP1106804$$aSoreq, Yotam$$b107 000605052 7001_ $$0P:(DE-H253)PIP1088317$$aSpataro, David$$b108 000605052 7001_ $$0P:(DE-H253)PIP1020832$$aStreeter, Matthew$$b109 000605052 7001_ $$0P:(DE-HGF)0$$aSwientek, K.$$b110 000605052 7001_ $$0P:(DE-H253)PIP1094407$$aHod, Noam Tal$$b111 000605052 7001_ $$0P:(DE-HGF)0$$aTeter, T.$$b112 000605052 7001_ $$0P:(DE-H253)PIP1100969$$aThiebault, Alice Helene$$b113 000605052 7001_ $$0P:(DE-H253)PIP1090948$$aThoden, Daniel$$b114 000605052 7001_ $$0P:(DE-H253)PIP1102408$$aTrevisani, Nicolò$$b115 000605052 7001_ $$0P:(DE-HGF)0$$aUrmanov, R.$$b116 000605052 7001_ $$0P:(DE-H253)PIP1102873$$aVasiukov, Sergii$$b117 000605052 7001_ $$0P:(DE-H253)PIP1095691$$aWalker, Stuart$$b118 000605052 7001_ $$0P:(DE-H253)PIP1029799$$aWarren, Matthew$$b119 000605052 7001_ $$0P:(DE-H253)PIP1080456$$aYap, Yee Chinn$$b120 000605052 7001_ $$0P:(DE-HGF)0$$aZadok, N.$$b121 000605052 7001_ $$0P:(DE-H253)PIP1095857$$aZanetti, Marco$$b122 000605052 7001_ $$aZarnecki, Aleksander Filip$$b123 000605052 7001_ $$0P:(DE-HGF)0$$aZbińkowski, P.$$b124 000605052 7001_ $$0P:(DE-H253)PIP1102374$$aZembaczynski, Kamil$$b125 000605052 7001_ $$0P:(DE-H253)PIP1089310$$aZepf, Matt$$b126 000605052 7001_ $$0P:(DE-H253)PIP1089344$$aZerwas, Dirk$$b127 000605052 7001_ $$0P:(DE-H253)PIP1012249$$aZiegler, Walter$$b128 000605052 7001_ $$0P:(DE-H253)PIP1103650$$aZuffa, Mirco$$b129 000605052 7001_ $$0P:(DE-HGF)0$$aLUXE Collaboration$$b130 000605052 7001_ $$0P:(DE-H253)PIP1005333$$aAltarelli, Massimo$$b131$$eEditor 000605052 7001_ $$0P:(DE-H253)PIP1028638$$aJacobs, Ruth Magdalena$$b132$$eCorresponding author$$udesy 000605052 7001_ $$0P:(DE-H253)PIP1002090$$aLevy, Aharon$$b133$$eEditor 000605052 7001_ $$0P:(DE-H253)PIP1002533$$aWing, Matthew$$b134$$eEditor 000605052 7001_ $$0P:(DE-HGF)0$$aLUXE Collaboration$$b135$$eResearch Group 000605052 7001_ $$0P:(DE-H253)PIP1030369$$aHeinemann, Beate$$b136$$eContact Person 000605052 77318 $$2Crossref$$3journal-article$$a10.1140/epjs/s11734-024-01164-9$$bSpringer Science and Business Media LLC$$d2024-10-01$$n10$$p1709-1974$$tThe European Physical Journal Special Topics$$v233$$x1951-6355$$y2024 000605052 773__ $$0PERI:(DE-600)2267176-6$$a10.1140/epjs/s11734-024-01164-9$$n10$$p1709-1974$$tEuropean physical journal special topics$$v233$$x1951-6355$$y2024 000605052 7870_ $$0PUBDB-2023-05632$$aAbramowicz, H. et.al.$$d2023$$iIsParent$$rarXiv:2308.00515 ; DESY-24-048$$tTechnical Design Report for the LUXE Experiment 000605052 8564_ $$uhttps://rdcu.be/dYzFo 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/HTML-Approval_of_scientific_publication.html 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/PDF-Approval_of_scientific_publication.pdf 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf$$yRestricted 000605052 8564_ $$uhttps://bib-pubdb1.desy.de/record/605052/files/s11734-024-01164-9-1.pdf?subformat=pdfa$$xpdfa$$yRestricted 000605052 8767_ $$92024-06-24$$d2024-06-24$$eHybrid-OA$$jDEAL$$lSpringerNature$$zCorresponding author: R. Jacobs 000605052 8767_ $$92024-06-24$$d2024-06-24$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr 000605052 8767_ $$92024-06-24$$d2024-06-24$$eHybrid-OA$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt) 000605052 8767_ $$92024-06-24$$d2024-06-24$$eHybrid-OA$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt) 000605052 909CO $$ooai:bib-pubdb1.desy.de:605052$$popenCost$$pOpenAPC$$pVDB$$pOpenAPC_DEAL 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003003$$aExternal Institute$$b0$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017739$$aExternal Institute$$b2$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103471$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003157$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1027710$$aExternal Institute$$b7$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103864$$aExternal Institute$$b8$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094409$$aExternal Institute$$b9$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1032082$$aExternal Institute$$b12$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027706$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086957$$aExternal Institute$$b14$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002829$$aExternal Institute$$b15$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089339$$aExternal Institute$$b16$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002844$$aDeutsches Elektronen-Synchrotron$$b17$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002788$$aExternal Institute$$b18$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080380$$aDeutsches Elektronen-Synchrotron$$b19$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002872$$aDeutsches Elektronen-Synchrotron$$b20$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094411$$aExternal Institute$$b21$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002883$$aDeutsches Elektronen-Synchrotron$$b22$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002733$$aDeutsches Elektronen-Synchrotron$$b23$$kDESY 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1002733$$aEuropean XFEL$$b23$$kXFEL.EU 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094892$$aDeutsches Elektronen-Synchrotron$$b27$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094892$$aExternal Institute$$b27$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1004536$$aExternal Institute$$b30$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094410$$aExternal Institute$$b33$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002528$$aDeutsches Elektronen-Synchrotron$$b35$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002530$$aDeutsches Elektronen-Synchrotron$$b36$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089426$$aExternal Institute$$b37$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093035$$aExternal Institute$$b38$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087051$$aExternal Institute$$b39$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100386$$aExternal Institute$$b41$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002576$$aDeutsches Elektronen-Synchrotron$$b42$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023796$$aDeutsches Elektronen-Synchrotron$$b43$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098994$$aExternal Institute$$b44$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1003381$$aExternal Institute$$b45$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1091363$$aDeutsches Elektronen-Synchrotron$$b46$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102420$$aDeutsches Elektronen-Synchrotron$$b47$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1030369$$aDeutsches Elektronen-Synchrotron$$b48$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097685$$aExternal Institute$$b49$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088299$$aDeutsches Elektronen-Synchrotron$$b50$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105888$$aExternal Institute$$b51$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094891$$aExternal Institute$$b54$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1092157$$aDeutsches Elektronen-Synchrotron$$b55$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091171$$aExternal Institute$$b56$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1024692$$aExternal Institute$$b57$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100286$$aExternal Institute$$b58$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102406$$aExternal Institute$$b59$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1096813$$aDeutsches Elektronen-Synchrotron$$b60$$kDESY 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1095554$$aEuropean XFEL$$b61$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095554$$aExternal Institute$$b61$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106347$$aExternal Institute$$b64$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099214$$aExternal Institute$$b66$$kExtern 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1099214$$aEuropean XFEL$$b66$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1108797$$aExternal Institute$$b67$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1027707$$aDeutsches Elektronen-Synchrotron$$b68$$kDESY 000605052 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1086123$$aEuropean Molecular Biology Laboratory$$b69$$kEMBL 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086123$$aExternal Institute$$b69$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002007$$aDeutsches Elektronen-Synchrotron$$b70$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002008$$aDeutsches Elektronen-Synchrotron$$b71$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005630$$aDeutsches Elektronen-Synchrotron$$b72$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003723$$aDeutsches Elektronen-Synchrotron$$b73$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089342$$aExternal Institute$$b74$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093201$$aDeutsches Elektronen-Synchrotron$$b75$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104707$$aExternal Institute$$b77$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083387$$aDeutsches Elektronen-Synchrotron$$b79$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091146$$aExternal Institute$$b82$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000470$$aDeutsches Elektronen-Synchrotron$$b85$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080600$$aExternal Institute$$b90$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099137$$aExternal Institute$$b91$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1089542$$aDeutsches Elektronen-Synchrotron$$b92$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089542$$aExternal Institute$$b92$$kExtern 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1089542$$aEuropean XFEL$$b92$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103200$$aExternal Institute$$b93$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1101170$$aDeutsches Elektronen-Synchrotron$$b94$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001650$$aDeutsches Elektronen-Synchrotron$$b95$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094412$$aExternal Institute$$b98$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094414$$aExternal Institute$$b99$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085480$$aExternal Institute$$b100$$kExtern 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085480$$aEuropean XFEL$$b100$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1001665$$aExternal Institute$$b101$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001586$$aDeutsches Elektronen-Synchrotron$$b102$$kDESY 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1106252$$aDeutsches Elektronen-Synchrotron$$b103$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1006070$$aExternal Institute$$b104$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096585$$aExternal Institute$$b105$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1106804$$aExternal Institute$$b107$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1088317$$aDeutsches Elektronen-Synchrotron$$b108$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020832$$aExternal Institute$$b109$$kExtern 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020832$$aEuropean XFEL$$b109$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094407$$aExternal Institute$$b111$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100969$$aExternal Institute$$b113$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1090948$$aDeutsches Elektronen-Synchrotron$$b114$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102408$$aExternal Institute$$b115$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102873$$aExternal Institute$$b117$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1095691$$aDeutsches Elektronen-Synchrotron$$b118$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029799$$aExternal Institute$$b119$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080456$$aDeutsches Elektronen-Synchrotron$$b120$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095857$$aExternal Institute$$b122$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102374$$aDeutsches Elektronen-Synchrotron$$b125$$kDESY 000605052 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1089310$$aEuropean XFEL$$b126$$kXFEL.EU 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089310$$aExternal Institute$$b126$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089344$$aExternal Institute$$b127$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1012249$$aExternal Institute$$b128$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103650$$aExternal Institute$$b129$$kExtern 000605052 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1005333$$aCentre for Free-Electron Laser Science$$b131$$kCFEL 000605052 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1005333$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b131$$kMPG 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028638$$aDeutsches Elektronen-Synchrotron$$b132$$kDESY 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002090$$aExternal Institute$$b133$$kExtern 000605052 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1002533$$aExternal Institute$$b134$$kExtern 000605052 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1030369$$aDeutsches Elektronen-Synchrotron$$b136$$kDESY 000605052 9131_ $$0G:(DE-HGF)POF4-622$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector Technologies and Systems$$x0 000605052 9141_ $$y2024 000605052 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger 000605052 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger 000605052 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23 000605052 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23 000605052 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-SPEC TOP : 2022$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12 000605052 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12 000605052 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000605052 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000605052 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000605052 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 000605052 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x0 000605052 980__ $$ajournal 000605052 980__ $$aVDB 000605052 980__ $$aI:(DE-H253)FTX-20210408 000605052 980__ $$aAPC 000605052 980__ $$aUNRESTRICTED 000605052 9801_ $$aAPC 000605052 999C5 $$1C Bamber$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.60.092004$$tPhys. Rev. D$$uC. Bamber et al., Studies of nonlinear QED in collisions of 46.6-GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999)$$v60$$y1999 000605052 999C5 $$1C Harvey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.79.063407$$tPhys. Rev. A$$uC. Harvey, T. Heinzl, A. Ilderton, Signatures of high-intensity Compton scattering. Phys. Rev. A 79, 063407 (2009). arXiv:0903.4151 [hep-ph]$$v79$$y2009 000605052 999C5 $$1J Adam$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.127.052302$$tPhys. Rev. Lett.$$uJ. Adam et al., Measurement of $$e^+e^-$$ momentum and angular distributions from linearly polarized photon collisions. Phys. Rev. Lett. 127, 052302 (2021). https://doi.org/10.1103/PhysRevLett.127.052302. arXiv:1910.12400 [nucl-ex]$$v127$$y2021 000605052 999C5 $$2Crossref$$uT.G. Blackburn, https://github.com/tgblackburn/ptarmigan 000605052 999C5 $$1TG Blackburn$$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/ac1bf6$$tNew J. Phys.$$uT.G. Blackburn, A.J. MacLeod, B. King, From local to nonlocal: higher fidelity simulations of photon emission in intense laser pulses. New J. Phys. 23, 085008 (2021). https://doi.org/10.1088/1367-2630/ac1bf6. arXiv:2103.06673 [hep-ph]$$v23$$y2021 000605052 999C5 $$1TG Blackburn$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-021-09955-3$$p44 -$$tEur. Phys. J. C$$uT.G. Blackburn, B. King, Higher fidelity simulations of nonlinear Breit–Wheeler pair creation in intense laser pulses. Eur. Phys. J. C 82, 44 (2022). https://doi.org/10.1140/epjc/s10052-021-09955-3. arXiv:2108.10883 [hep-ph]$$v82$$y2022 000605052 999C5 $$2Crossref$$uM. McCullough, Lectures on Physics Beyond the Standard Model, 6th Tri-Institute Summer School on Elementary Particles (2018) 000605052 999C5 $$2Crossref$$uR.K. Ellis et al., Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020 (2019). arXiv:1910.11775 [hep-ex] 000605052 999C5 $$1RD Peccei$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.38.1440$$p1440 -$$tPhys. Rev. Lett.$$uR.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440 (1977). https://doi.org/10.1103/PhysRevLett.38.1440$$v38$$y1977 000605052 999C5 $$1RD Peccei$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.16.1791$$p1791 -$$tPhys. Rev. D$$uR.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791 (1977). https://doi.org/10.1103/PhysRevD.16.1791$$v16$$y1977 000605052 999C5 $$1F Wilczek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.279$$p279 -$$tPhys. Rev. Lett.$$uF. Wilczek, Problem of strong $$P$$ and $$T$$ invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978). https://doi.org/10.1103/PhysRevLett.40.279$$v40$$y1978 000605052 999C5 $$1S Weinberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.40.223$$p223 -$$tPhys. Rev. Lett.$$uS. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223 (1978). https://doi.org/10.1103/PhysRevLett.40.223$$v40$$y1978 000605052 999C5 $$1Z Bai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.106.115034$$tPhys. Rev. D$$uZ. Bai et al., New physics searches with an optical dump at LUXE. Phys. Rev. D 106, 115034 (2022). https://doi.org/10.1103/PhysRevD.106.115034. arXiv:2107.13554 [hep-ph]$$v106$$y2022 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjs/s11734-021-00249-z$$uH. Abramowicz et al., Conceptual design report for the LUXE experiment. Eur. Phys. J. ST 230, 2445 (2021). https://doi.org/10.1140/epjs/s11734-021-00249-z. arXiv: 2102.02032 [hep-ex] 000605052 999C5 $$1C Bula$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.3116$$p3116 -$$tPhys. Rev. Lett.$$uC. Bula et al., Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76, 3116 (1996)$$v76$$y1996 000605052 999C5 $$1DL Burke$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.1626$$p1626 -$$tPhys. Rev. Lett.$$uD.L. Burke et al., Positron production in multi-photon light by light scattering. Phys. Rev. Lett. 79, 1626 (1997)$$v79$$y1997 000605052 999C5 $$1JM Cole$$2Crossref$$uJ.M. Cole et al., Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8, 011020 (2018). arXiv: 1707.06821 [physics.plasm-ph]$$y2018 000605052 999C5 $$1K Poder$$2Crossref$$uK. Poder et al., Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8, 031004 (2018). arXiv:1709.01861 [physics.plasm-ph]$$y2018 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/HILAS.2022.HF4B.6$$uZ. Chen et al., Preparation of Strong-field QED Experiments at FACET-II. Optica High-brightness Sources and Light-driven Interactions Congress 2022, Optica Publishing Group, 2022 HF4B.6. https://opg.optica.org/abstract.cfm?URI=HILAS-2022-HF4B.6 000605052 999C5 $$1ICE Turcu$$2Crossref$$uI.C.E. Turcu et al., High field physics and QED experiments at ELI-NP. Rom. Rep. Phys. 68, S145 (2016)$$y2016 000605052 999C5 $$2Crossref$$uJ. Müller et al., Large-scale optical synchronization system of the European XFEL, in Proc. 29th Linear Accelerator Conference (LINAC’18), Beijing, 16–21 September 2018, Geneva (JACoW Publishing, 2019) p. 253 http://jacow.org/linac2018/papers/mopo121.pdf 000605052 999C5 $$2Crossref$$uS. Schulz et al., Few Femtosecond Facility-Wide-Synchronization of the European XFEL, in Proceedings of the 39 the International Free-Electron Laser Conference (Hamburg) (2019). https://fel2019.vrws.de/papers/web04.pdf 000605052 999C5 $$1A Santra$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/18/05/P05007$$pP05007 -$$tJ. Instrum.$$uA. Santra, N.T. Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. J. Instrum. 18, P05007 (2023)$$v18$$y2023 000605052 999C5 $$1K Fleck$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-66832-x$$p9894 -$$tSci. Rep.$$uK. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020)$$v10$$y2020 000605052 999C5 $$1N Cavanagh$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.5.043046$$tPhys. Rev. Res.$$uN. Cavanagh et al., Experimental characterization of a single-shot spectrometer for high-flux, GeV-scale gamma-ray beams. Phys. Rev. Res. 5, 043046 (2023). https://doi.org/10.1103/PhysRevResearch.5.043046$$v5$$y2023 000605052 999C5 $$1A Ringwald$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)00496-8$$p107 -$$tPhys. Lett. B$$uA. Ringwald, Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B 510, 107 (2001). arXiv:hep-ph/0103185$$v510$$y2001 000605052 999C5 $$1J Schwinger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.82.664$$p664 -$$tPhys. Rev.$$uJ. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)$$v82$$y1951 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/physreva.83.052122$$uD. Hanneke, S. Fogwell Hoogerheide, G. Gabrielse et al., Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys. Rev. A 83, 052122 (2011). https://doi.org/10.1103/physreva.83.052122 000605052 999C5 $$1T Aoyama$$2Crossref$$9-- missing cx lookup --$$a10.3390/atoms7010028$$p28 -$$tAtoms$$uT. Aoyama, T. Kinoshita, M. Nio, Theory of the anomalous magnetic moment of the electron. Atoms 7, 28 (2019). https://doi.org/10.3390/atoms7010028$$v7$$y2019 000605052 999C5 $$1A Fedotov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2023.01.003$$p1 -$$tPhys. Rep.$$uA. Fedotov et al., Advances in QED with intense background fields. Phys. Rep. 1010, 1 (2023). https://doi.org/10.1016/j.physrep.2023.01.003. arXiv:2203.00019 [hep-ph]$$v1010$$y2023 000605052 999C5 $$1R Ruffini$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2009.10.004$$p1 -$$tPhys. Rep.$$uR. Ruffini, G. Vereshchagin, S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487, 1 (2010). https://doi.org/10.1016/j.physrep.2009.10.004. arXiv:0910.0974 [astro-ph.HE]$$v487$$y2010 000605052 999C5 $$1AI Nikishov$$2Crossref$$uA.I. Nikishov, Absorption of high-energy photons in the universe. Sov. Phys. JETP 14, 393 (1962)$$y1962 000605052 999C5 $$1C Kouveliotou$$2Crossref$$9-- missing cx lookup --$$a10.1038/30410$$p235 -$$tNature$$uC. Kouveliotou et al., An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235 (1998)$$v393$$y1998 000605052 999C5 $$1AK Harding$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/69/9/r03$$p2631 -$$tRep. Prog. Phys.$$uA.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631 (2006). https://doi.org/10.1088/0034-4885/69/9/r03$$v69$$y2006 000605052 999C5 $$1R Turolla$$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/78/11/116901$$tRep. Prog. Phys$$uR. Turolla, S. Zane, A. Watts, Magnetars: the physics behind observations. A review. Rep. Prog. Phys 78, 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901. arXiv:1507.02924 [astro-ph.HE]$$v78$$y2015 000605052 999C5 $$1V Yakimenko$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.190404$$tPhys. Rev. Lett.$$uV. Yakimenko et al., Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122, 190404 (2019). https://doi.org/10.1103/PhysRevLett.122.190404$$v122$$y2019 000605052 999C5 $$2Crossref$$uP.H. Bucksbaum et al., Probing QED Cascades and Pair Plasmas in Laboratory Experiments. LoI to Cosmic Frontier (2020). https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1-001.pdf 000605052 999C5 $$1SZ Akhmadaliev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.061802$$tPhys. Rev. Lett.$$uS.Z. Akhmadaliev et al., Experimental investigation of high-energy photon splitting in atomic fields. Phys. Rev. Lett. 89, 061802 (2002). https://doi.org/10.1103/PhysRevLett.89.061802. arXiv:hep-ex/0111084$$v89$$y2002 000605052 999C5 $$1MY Ivanov$$2Crossref$$9-- missing cx lookup --$$a10.1080/0950034042000275360$$p165 -$$tJ. Mod. Opt.$$uM.Y. Ivanov, M. Spanner, O. Smirnova, Anatomy of strong field ionization. J. Mod. Opt. 52, 165 (2005). https://doi.org/10.1080/0950034042000275360$$v52$$y2005 000605052 999C5 $$1A Hartin$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.036008$$tPhys. Rev. D$$uA. Hartin, A. Ringwald, N. Tapia, Measuring the boiling point of the vacuum of quantum electrodynamics. Phys. Rev. D 99, 036008 (2019). arXiv:1807.10670 [hep-ph]$$v99$$y2019 000605052 999C5 $$1C Nielsen$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.130.071601$$tPhys. Rev. Lett.$$uC. Nielsen et al., Precision measurement of trident production in strong electromagnetic fields. Phys. Rev. Lett. 130, 071601 (2023)$$v130$$y2023 000605052 999C5 $$1T Heinzl$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.102.063110$$tPhys. Rev. A$$uT. Heinzl, B. King, A. Macleod, The locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A 102, 063110 (2020). https://doi.org/10.1103/PhysRevA.102.063110. arXiv:2004.13035 [hep-ph]$$v102$$y2020 000605052 999C5 $$1J Allison$$2Crossref$$9-- missing cx lookup --$$a10.1109/TNS.2006.869826$$p270 -$$tIEEE Trans. Nucl. Sci.$$uJ. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006)$$v53$$y2006 000605052 999C5 $$1J Allison$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2016.06.125$$p186 -$$tNucl. Instrum. Methods A$$uJ. Allison et al., Recent developments in Geant4. Nucl. Instrum. Methods A 835, 186 (2016)$$v835$$y2016 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/NSS/MIC42101.2019.9059613$$uA. Irles, Testing highly integrated components for the technological prototype of the CALICE SiW-ECAL, in 2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC), p. 1 (2019). arXiv:2004.12792 [physics.ins-det] 000605052 999C5 $$1Y-S Tsai$$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.46.815$$p815 -$$tRev. Mod. Phys.$$uY.-S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815 (1974). https://doi.org/10.1103/RevModPhys.46.815$$v46$$y1974 000605052 999C5 $$1V Leroux$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.386112$$p8257 -$$tOpt. Express$$uV. Leroux, T. Eichner, A.R. Maier, Description of spatio-temporal couplings from heat-induced compressor grating deformation. Opt. Express 28, 8257 (2020). https://doi.org/10.1364/OE.386112$$v28$$y2020 000605052 999C5 $$2Crossref$$uA.L. Garcia et al., ReLaX: the HiBEF high-intensity short-pulse laser driver for relativistic laser-matter interaction and strong-field science at the HED instrument at EuXFEL. High Power laser Science and Engineering (2021). https://doi.org/accepted 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0030-4018(85)90151-8$$uD. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447 (1985) [Erratum: Opt. Commun. 56, 219 (1985)] 000605052 999C5 $$1B Steffen$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5142833$$tRev. Sci. Instrum.$$uB. Steffen et al., Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Rev. Sci. Instrum. 91, 045123 (2020). https://doi.org/10.1063/1.5142833$$v91$$y2020 000605052 999C5 $$1SW Jolly$$2Crossref$$9-- missing cx lookup --$$a10.1088/2040-8986/abad08$$tJ. Opt.$$uS.W. Jolly, O. Gobert, F. Quéré, Spatio-temporal characterization of ultrashort laser beams: a tutorial. J. Opt. 22, 103501 (2020)$$v22$$y2020 000605052 999C5 $$2Crossref$$uThe Distributed Object-Oriented Control System Framework. https://doocs-web.desy.de/index.html 000605052 999C5 $$1B Abelev$$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/41/8/087002$$tJ. Phys. G$$uB. Abelev et al., Technical design report for the upgrade of the ALICE Inner Tracking System. J. Phys. G 41, 087002 (2014)$$v41$$y2014 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2016.05.016$$uG. Aglieri Rinella, The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System. Nucl. Inst. Methods A. 845, 583 (2017). Proceedings of the Vienna Conference on Instrumentation 2016. https://doi.org/10.1016/j.nima.2016.05.016 000605052 999C5 $$2Crossref$$uTowerJazz, (2022). https://towersemi.com/ 000605052 999C5 $$1K Aamodt$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/3/08/s08002$$pS08002 -$$tJINST$$uK. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008). https://doi.org/10.1088/1748-0221/3/08/s08002$$v3$$y2008 000605052 999C5 $$1RE Kalman$$2Crossref$$9-- missing cx lookup --$$a10.1115/1.3662552$$p35 -$$tTrans. ASME-J. Basic Eng.$$uR.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35 (1960)$$v82$$y1960 000605052 999C5 $$1M Garcia-Sciveres$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/aab064$$tRep. Prog. Phys.$$uM. Garcia-Sciveres, N. Wermes, A review of advances in pixel detectors for experiments with high rate and radiation. Rep. Prog. Phys. 81, 066101 (2018). https://doi.org/10.1088/1361-6633/aab064. arXiv:1705.10150 [physics.ins-det]$$v81$$y2018 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2015.09.057$$uM. Mager, ALPIDE, the monolithic active pixel sensor for the ALICE ITS upgrade. Nucl. Instr. Methods A 824, 434 (2016). Frontier detectors for frontier physics: proceedings of the 13th Pisa meeting on advanced detectors. https://doi.org/10.1016/j.nima.2015.09.057 000605052 999C5 $$1P Yang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2015.02.063$$p61 -$$tNucl. Instr. Methods A$$uP. Yang et al., Low-power priority address-encoder and reset-decoder data-driven readout for monolithic active pixel sensors for tracker system. Nucl. Instr. Methods A 785, 61 (2015). https://doi.org/10.1016/j.nima.2015.02.063$$v785$$y2015 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2013.03.017$$uS. Senyukov et al., Charged particle detection performances of CMOS pixel sensors produced in a 0.18 $$\mu$$m process with a high resistivity epitaxial layer. Nucl. Instr. Methods A 730, 115 (2013). Proceedings of the 9th international conference on radiation effects on semiconductor materials detectors and devices. https://doi.org/10.1016/j.nima.2013.03.017 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.164859$$uG. Aglieri Rinella et al., Charge collection properties of TowerJazz 180 nm CMOS Pixel Sensors in dependence of pixel geometries and bias parameters, studied using a dedicated test-vehicle: the Investigator chip. Nucl. Instr. Methods A 988, 164859 (2021). https://doi.org/10.1016/j.nima.2020.164859 000605052 999C5 $$1D Dannheim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2019.02.049$$p187 -$$tNucl. Instr. Methods A$$uD. Dannheim et al., Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer. Nucl. Instr. Methods A 927, 187 (2019). https://doi.org/10.1016/j.nima.2019.02.049$$v927$$y2019 000605052 999C5 $$2Crossref$$uExpression of Interest for an ALICE ITS Upgrade in LS3 (2018). http://cds.cern.ch/record/2644611 000605052 999C5 $$1J Anderson$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/11/12/c12023$$pC12023 -$$tJINST$$uJ. Anderson et al., FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework. JINST 11, C12023 (2016). https://doi.org/10.1088/1748-0221/11/12/c12023$$v11$$y2016 000605052 999C5 $$1W Panduro Vazquez$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/202024501037$$tEur. Phys. J. Web Conf$$uW. Panduro Vazquez, FELIX: the new detector interface for ATLAS. Eur. Phys. J. Web Conf 245, 01037 (2020). https://doi.org/10.1051/epjconf/202024501037$$v245$$y2020 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/NSS/MIC42101.2019.9060037$$uM. Trovato, FELIX: The New Readout System for the ATLAS Detector, in 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), p. 1 (2019) 000605052 999C5 $$1A Borga$$2Crossref$$9-- missing cx lookup --$$a10.1109/TNS.2019.2904660$$p993 -$$tIEEE Trans. Nucl. Sci.$$uA. Borga et al., FELIX-based readout of the single-phase ProtoDUNE detector. IEEE Trans. Nucl. Sci. 66, 993 (2019). https://doi.org/10.1109/TNS.2019.2904660$$v66$$y2019 000605052 999C5 $$2Crossref$$uCAEN EASY3000, Crate for EASY3000 Power Supply System for Hostile Area. https://www.caen.it/products/easy3000/ 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2018.10.075$$uY. Kim, The detector development and physics program in sPHENIX experiment at RHIC. Nucl. Phys. A 982, 955 (2019). The 27th international conference on ultrarelativistic nucleus-nucleus collisions: Quark Matter 2018. https://doi.org/10.1016/j.nuclphysa.2018.10.075 000605052 999C5 $$1G De Robertis$$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817407002$$p07002 -$$tEur. Phys. J. Web Conf.$$uG. De Robertis et al., A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment. Eur. Phys. J. Web Conf. 174, 07002 (2018). https://doi.org/10.1051/epjconf/201817407002$$v174$$y2018 000605052 999C5 $$2Crossref$$u(2021). https://ww1.microchip.com/downloads/en/DeviceDoc/MIC2915x-30x-50x-75x-High-Current-Low-Dropout-Regulators-DS20005685B.pdf 000605052 999C5 $$2Crossref$$uALPIDE Operations Manual (2016). http://sunba2.ba.infn.it/MOSAIC/ALICE-ITS/Documents/ALPIDE-operations-manual-version-0_3.pdf 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/18/05/P05007$$uA. Santra, N. Tal Hod, A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations. JINST 18, P05007 (2023). https://doi.org/10.1088/1748-0221/18/05/P05007. arXiv: 2209.03457 [physics.ins-det] 000605052 999C5 $$1S Agostinelli$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(03)01368-8$$p250 -$$tNucl. Instr. Methods A$$uS. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instr. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8$$v506$$y2003 000605052 999C5 $$2Crossref$$uH. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022) 000605052 999C5 $$1S Spannagel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2018.06.020$$p164 -$$tNucl. Instr. Methods A$$uS. Spannagel et al., Allpix2: a modular simulation framework for silicon detectors. Nucl. Instr. Methods A 901, 164 (2018). https://doi.org/10.1016/j.nima.2018.06.020$$v901$$y2018 000605052 999C5 $$1M Šuljić$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2019.162882$$tNucl. Instr. Methods A$$uM. Šuljić, P. Camerini, J.W. van Hoorne, Monte Carlo simulation of charge collection processes in Monolithic Active Pixel Sensors for the ALICE ITS upgrade. Nucl. Instr. Methods A 950, 162882 (2020). https://doi.org/10.1016/j.nima.2019.162882$$v950$$y2020 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/9/09/P09009$$uThe ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector. JINST 9, P09009 (2014). https://doi.org/10.1088/1748-0221/9/09/P09009 000605052 999C5 $$1P Billoir$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(90)91835-Y$$p219 -$$tNucl. Instr. Methods A$$uP. Billoir, S. Qian, Simultaneous pattern recognition and track fitting by the Kalman filtering method. Nucl. Instr. Methods A 294, 219 (1990). https://doi.org/10.1016/0168-9002(90)91835-Y$$v294$$y1990 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2020.163784$$uD. Dannheim et al., Combining TCAD and Monte Carlo Methods to simulate CMOS pixel sensors with a small collection electrode using the Allpix$$^2$$ squared framework. Nucl. Instr. Methods A 964, 163784 (2020). https://doi.org/10.1016/j.nima.2020.163784. arXiv: 2002.12602 [physics.ins-det] 000605052 999C5 $$1Y Liu$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/14/10/p10033$$pP10033 -$$tJINST$$uY. Liu et al., EUDAQ2—a flexible data acquisition software framework for common test beams. JINST 14, P10033 (2019). https://doi.org/10.1088/1748-0221/14/10/p10033$$v14$$y2019 000605052 999C5 $$1P Baesso$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/14/09/p09019$$pP09019 -$$tJINST$$uP. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/p09019$$v14$$y2019 000605052 999C5 $$1S Kushpil$$2Crossref$$9-- missing cx lookup --$$a10.1109/TNS.2019.2945234$$p2319 -$$tIEEE Trans. Nucl. Sci.$$uS. Kushpil, F. Krizek, A. Isakov, Recent results from beam tests of the ALPIDE Pixel chip for the upgrade of the ALICE Inner Tracker. IEEE Trans. Nucl. Sci. 66, 2319 (2019). https://doi.org/10.1109/TNS.2019.2945234$$v66$$y2019 000605052 999C5 $$2Crossref$$uH. Abramowicz et al., Forward instrumentation for ILC detectors. JINST 5, P12002 (2010). arXiv: 1009.2433 [physics.ins-det] 000605052 999C5 $$2Crossref$$uH. Abramowicz et al., Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam. Eur. Phys. J. C 79, 579 (2019). arXiv:1812.11426 [physics.ins-det] 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2019.162969$$uK. Kawagoe et al., Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. Nucl. Instr. Methods A 950, 162969 (2020). https://doi.org/10.1016/j.nima.2019.162969. arXiv:1902.00110 [physics.ins-det] 000605052 999C5 $$2Crossref$$uA. Hartin, Private communication 000605052 999C5 $$2Crossref$$uJ. Moron, FLAME SoC readout ASIC for electromagnetic calorimeter, September 19–23 (2022). https://indico.cern.ch/event/1127562/contributions/4904506/attachments/2512388/4318796/moron_TWEPP_2022_09_21.pdf 000605052 999C5 $$2Crossref$$uM. Idzik, The FLAME and FLAXE ASICs, June 12–16 (2023). https://agenda.infn.it/event/36206/contributions/202659/attachments/106949/150868/idzik_FEE_2023_06_FLAME.pdf 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/15/01/P01038$$uP. Ahlburg et al., EUDAQ—a data acquisition software framework for common beam telescopes. JINST 15, P01038 (2020). https://doi.org/10.1088/1748-0221/15/01/P01038. arXiv:1909.13725 [physics.ins-det] 000605052 999C5 $$1S Callier$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/6/12/C12040$$pC12040 -$$tJINST$$uS. Callier et al., SKIROC2, front end chip designed to readout the Electromagnetic CALorimeter at the ILC. JINST 6, C12040 (2011). https://doi.org/10.1088/1748-0221/6/12/C12040$$v6$$y2011 000605052 999C5 $$2Crossref$$uO. Novgorodova, Characterisation and Application of Radiation Hard Sensors for LHC and ILC. PhD thesis: Brandenburg Tech. U. (2013) 000605052 999C5 $$2Crossref$$uM. Shchedrolosiev, Optimization of an electromagnetic calorimeter for the LUXE experiment, Taras Shevchenko National University of Kyiv, Faculty of Nuclear Physics (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55608/main_eng.pdf 000605052 999C5 $$2Crossref$$uS. Takada et al., Characteristic study of silicon sensor for ILD ECAL (2015). arXiv:1503.09050 [hep-ex] 000605052 999C5 $$2Crossref$$uH. Abramowicz et al., Chapter 11: Data Acquisition, Computing & Simulation, this report (2022) 000605052 999C5 $$1E Kroupp$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0090514$$tMatter Radiat. Extremes$$uE. Kroupp et al., Commissioning and first results from the new 2 Õ 100 TW laser at the WIS. Matter Radiat. Extremes 7, 044401 (2022). https://doi.org/10.1063/5.0090514$$v7$$y2022 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2021.165555$$uM. Berggren et al., Kinematic edge detection using finite impulse response filters (2020). arXiv:2012.11415 [hep-ex] 000605052 999C5 $$2Crossref$$uBasler AG, Basler Area Scan Camera Range (2021). https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ 000605052 999C5 $$2Crossref$$uEdmund Optics, 543 nm CWL, 50 mm Dia, 22 nm Bandwidth, OD 6 Fluorescence Filter (2021). https://www.edmundoptics.com/p/543nm-cwl-50mm-dia-22nm-bandwidth-od-6-fluorescence-filter/21586/ 000605052 999C5 $$2Crossref$$uBasler AG, Basler acA1920-40gm, Camera Specification, Document Number: BD000940, version v01 (2021). https://www.baslerweb.com/fp-1489067421/media/downloads/documents/emva_data/BD00094001_Basler_acA1920-40gm_EMVA_Standard_1288.pdf 000605052 999C5 $$2Crossref$$uBasler AG, Basler acA4096-11gm, Camera Specification, Document Number: BD001167, version v01 (2021). https://www.baslerweb.com/fp-1520251824/media/downloads/documents/emva_data/BD00116701_Basler_acA4096-11gm_EMVA_Standard_1288.pdf 000605052 999C5 $$2Crossref$$uF. Keeble, Measurement of the electron energy distribution at AWAKE, PhD thesis: University College London (2019) 000605052 999C5 $$1E Adli$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0485-4$$p363 -$$tNature$$uE. Adli et al., Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363 (2018). https://doi.org/10.1038/s41586-018-0485-4$$v561$$y2018 000605052 999C5 $$2Crossref$$uD. Lipka et al., Dark Current Monitor for the European XFEL, in 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Hamburg (Germany), 16 May 2011–18 May 2011, JACoW (2011). https://bib-pubdb1.desy.de/record/90975 000605052 999C5 $$2Crossref$$uEdmund Optics, Green M34.0 x 0.50 High Performance Machine Vision Filter (2021). https://www.edmundoptics.com/p/green-m340-x-050-machine-vision-filter/32224/ 000605052 999C5 $$2Crossref$$uMCIO Optonix, DRZ Screens (2021). http://www.mcio.com/Products/drz-screens.aspx 000605052 999C5 $$1ID Jung$$2Crossref$$9-- missing cx lookup --$$a10.1088/0960-1317/19/1/015014$$tJ. Micromech. Microeng.$$uI.D. Jung et al., Flexible Gd2O2S: Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors. J. Micromech. Microeng. 19, 015014 (2008). https://doi.org/10.1088/0960-1317/19/1/015014$$v19$$y2008 000605052 999C5 $$2Crossref$$uMitsubishi Chemical (2021). www.m-chemical.co.jp/en/products/departments/mcc/ledmat/product/1201037_7550.html 000605052 999C5 $$1R Morlotti$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-2313(96)00330-4$$p772 -$$tJ. Lumin.$$uR. Morlotti et al., Intrinsic conversion efficiency of X-rays to light in Gd2O2S: Tb3+ powder phosphors. J. Lumin. 72–74, 772 (1997). https://doi.org/10.1016/S0022-2313(96)00330-4$$v72–74$$y1997 000605052 999C5 $$2Crossref$$uEl-Mul Technologies Ltd., ScintiMax Data Sheet 000605052 999C5 $$2Crossref$$uPhosphor Technology, X-Ray Phosphors (2021). https://www.phosphor-technology.com/x-ray-phosphors/ 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2019.05.067$$uJ. Bauche et al., A magnetic spectrometer to measure electron bunches accelerated at AWAKE. Nucl. Instr. Methods A 940, 103 (2019). https://doi.org/10.1016/j.nima.2019.05.067 000605052 999C5 $$2Crossref$$uBasler AG, Basler Product Documentation, acA1920-40gm (2021). https://docs.baslerweb.com/aca1920-40gm 000605052 999C5 $$2Crossref$$uBasler AG, Basler Product Documentation, acA4096-11gm (2021). https://docs.baslerweb.com/aca4096-11gm 000605052 999C5 $$2Crossref$$uEdmund Optics, Edmund 75mm DG Series Fixed Focal Length Lens (2021). https://www.edmundoptics.co.uk/p/75mm-dg-series-fixed-focal-length-lens/11371/ 000605052 999C5 $$2Crossref$$uBasler AG, Basler Lens C11-5020-12M-P f50mm-Lens (2021). https://docs.baslerweb.com/c11-5020-12m-p 000605052 999C5 $$2Crossref$$uEdmund Optics, 0.5 OD 25mm Diameter Reflective ND Filter (2022). https://www.https://www.edmundoptics.com/p/05-od-25mm-diameter-reflective-nd-filter/1932/ 000605052 999C5 $$2Crossref$$uBasler AG (2022). https://www.baslerweb.com/en/products/software/basler-pylon-camera-software-suite/ 000605052 999C5 $$2Crossref$$uBasler AG (2021). docs.baslerweb.com/io-timing-characteristics-(ace-ace-2-boost) 000605052 999C5 $$2Crossref$$uAdvanced Illumination/Edmund Optics, 100 x 100 mm, 520 nm, LED Backlight (2022). https://www.edmundoptics.de/p/100-x-100mm-520nm-led-backlight/21339/ 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.fusengdes.2017.03.167$$uA. Huber et al., Response of the imaging cameras to hard radiation during JET operation. Fusion Eng. Design 123, 669 (2017). Proceedings of the 29th symposium on fusion technology (SOFT-29) Prague, September 5–9, 2016. https://doi.org/10.1016/j.fusengdes.2017.03.167 000605052 999C5 $$2Crossref$$uB. Heinemann, B. King, Chapter 2: Overview and Scientific Objectives, this report (2022) 000605052 999C5 $$2Crossref$$uDESY Radiation Protection Group (2020). https://d3.desy.de/index_eng.html 000605052 999C5 $$1R Diener$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2018.11.133$$p265 -$$tNucl. Instr. Methods A$$uR. Diener et al., The DESY II test beam facility. Nucl. Instr. Methods A 922, 265 (2019). https://doi.org/10.1016/j.nima.2018.11.133$$v922$$y2019 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/JACoW-IPAC2019-MOPTS054$$uK. Sjobak et al., Status of the CLEAR electron beam user facility at CERN, MOPTS054, p. 4 (2019). https://doi.org/10.18429/JACoW-IPAC2019-MOPTS054. https://cds.cern.ch/record/2695092 000605052 999C5 $$2Crossref$$uELBE Linac, The Superconducting Electron Linear Accelerator (2021). https://www.hzdr.de/db/Cms?pNid=584 000605052 999C5 $$1IM Frank$$2Crossref$$9-- missing cx lookup --$$a10.3367/UFNr.0093.196710o.0388$$p109 -$$tCompt. Rend. Acad. Sci. URSS$$uI.M. Frank, I.E. Tamm, Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS 14, 109 (1937). https://doi.org/10.3367/UFNr.0093.196710o.0388$$v14$$y1937 000605052 999C5 $$1PE Ciddor$$2Crossref$$9-- missing cx lookup --$$a10.1364/AO.35.001566$$p1566 -$$tAppl. Opt.$$uP.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566 (1996)$$v35$$y1996 000605052 999C5 $$1B Edlén$$2Crossref$$9-- missing cx lookup --$$a10.1088/0026-1394/2/2/002$$p71 -$$tMetrologia$$uB. Edlén, The refractive index of air. Metrologia 2, 71 (1966). https://doi.org/10.1088/0026-1394/2/2/002$$v2$$y1966 000605052 999C5 $$2Crossref$$uJ.A. Stone, J.H. Zimmerman, NIST Engineering Metrology Tool Box: Index of Refraction of Air (2022). https://emtoolbox.nist.gov/Main/Main.asp 000605052 999C5 $$2Crossref$$uATLAS inner detector: Technical Design Report, 1, Technical design report. ATLAS, CERN, Geneva (1997). https://cds.cern.ch/record/331063 000605052 999C5 $$2Crossref$$uF. Hahn et al., NA62: Technical Design Document, tech. rep., CERN (2010). https://cds.cern.ch/record/1404985 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/7/01/P01019$$uC. Bartels et al., Design and construction of a cherenkov detector for compton polarimetry at the ILC. JINST 7, P01019 (2012). arXiv: 1011.6314 [physics.ins-det] 000605052 999C5 $$1G Bentoumi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.anucene.2017.12.024$$p86 -$$tAnn. Nucl. Energy$$uG. Bentoumi et al., Reactor power monitoring using Cherenkov radiation transmitted through a small-bore metallic tube. Ann. Nucl. Energy 114, 86 (2018). https://doi.org/10.1016/j.anucene.2017.12.024$$v114$$y2018 000605052 999C5 $$2Crossref$$uF. Burkart et al., The ares Linac at Desy (2022) 000605052 999C5 $$2Crossref$$uS. Meuren, Probing Strong-field QED at FACET-II (SLAC E-320), Talk presented at FACET-II Science Workshop 2019 (2019). https://conf.slac.stanford.edu/facet-2-2019/sites/facet-2-2019.conf.slac.stanford.edu/files/basic-page-docs/sfqed_2019.pdf 000605052 999C5 $$2Crossref$$uO. Semiconductor, J-Series SiPM Sensors (2021). https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf 000605052 999C5 $$2Crossref$$uHamamatsu, S5344 Si APD (2021). https://www.hamamatsu.com/resources/pdf/ssd/s12053-02_etc_kapd1001e.pdf 000605052 999C5 $$2Crossref$$uS. Collaboration, SHiP Experiment—Comprehensive Design Study report, tech. rep., CERN (2019). https://cds.cern.ch/record/2704147 000605052 999C5 $$2Crossref$$uCAEN, DT5702 32 Channel SiPM Readout Board (2022). https://www.caen.it/products/dt5702/ 000605052 999C5 $$2Crossref$$uCAEN, DT5550W Complete Readout System based on Weeroc ASIC (2022). https://www.caen.it/products/dt5550w/ 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/NSSMIC.2011.6154596$$uM. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium Conference Record, p. 1171 (2011) 000605052 999C5 $$2Crossref$$uB. Vormwald, From Neutrino Physics to Beam Polarisation—a High Precision Story at the ILC, University of Hamburg, Diss., Dr. University of Hamburg (2014). https://bib-pubdb1.desy.de/record/168227 000605052 999C5 $$2Crossref$$uCAEN, A7585 1 Ch. +85 V/10 mA Digital Controlled SiPM Power Supply (2022). https://www.caen.it/products/a7585/ 000605052 999C5 $$1K Fleck$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-66832-x$$p9894 -$$tSci. Rep.$$uK. Fleck, N. Cavanagh, G. Sarri, Conceptual design of a high-flux multi-GeV gamma-ray spectrometer. Sci. Rep. 10, 9894 (2020). https://doi.org/10.1038/s41598-020-66832-x$$v10$$y2020 000605052 999C5 $$1G Sarri$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.224801$$tPhys. Rev. Lett.$$uG. Sarri et al., Ultrahigh brilliance multi-MeV $$\gamma$$-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014). https://doi.org/10.1103/PhysRevLett.113.224801$$v113$$y2014 000605052 999C5 $$1W Schumaker$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4875336$$tPhys. Plasmas$$uW. Schumaker et al., Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Phys. Plasmas 21, 056704 (2014). https://doi.org/10.1063/1.4875336$$v21$$y2014 000605052 999C5 $$1F Barbosa$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2015.06.012$$p376 -$$tNucl. Instr. Methods A$$uF. Barbosa et al., Pair spectrometer hodoscope for Hall D at Jefferson Lab. Nucl. Instr. Methods A 795, 376 (2015). https://doi.org/10.1016/j.nima.2015.06.012$$v795$$y2015 000605052 999C5 $$1TN Wistisen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-03165-4$$tNat. Commun.$$uT.N. Wistisen et al., Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-03165-4$$y2018 000605052 999C5 $$1K Behm$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5056248$$tRev. Sci. Instrum.$$uK. Behm et al., A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Rev. Sci. Instrum. 89, 113303 (2018). https://doi.org/10.1063/1.5056248$$v89$$y2018 000605052 999C5 $$1D Corvan$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4884643$$tRev. Sci. Instrum.$$uD. Corvan, G. Sarri, M. Zepf, Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum. 85, 065119 (2014). https://doi.org/10.1063/1.4884643$$v85$$y2014 000605052 999C5 $$1J McMillan$$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/763/1/012011$$tJ. Phys.$$uJ. McMillan et al., Scintillators and Cherenkov detectors for the registration of 10.8 MeV gamma rays. J. Phys. 763, 012011 (2016). https://doi.org/10.1088/1742-6596/763/1/012011$$v763$$y2016 000605052 999C5 $$1M Wilhelm$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)00793-0$$p462 -$$tNucl. Instr. Methods A$$uM. Wilhelm et al., The response of the Euroball Cluster detector to $$\gamma$$-radiation up to 10 MeV. Nucl. Instr. Methods A 381, 462 (1996). https://doi.org/10.1016/S0168-9002(96)00793-0$$v381$$y1996 000605052 999C5 $$1M Lipoglavšek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.11.067$$p523 -$$tNucl. Instr. Methods A$$uM. Lipoglavšek et al., Measuring high-energy $$\gamma$$-rays with Ge clover detectors. Nucl. Instr. Methods A 557, 523 (2006). https://doi.org/10.1016/j.nima.2005.11.067$$v557$$y2006 000605052 999C5 $$1C van Eijk$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/47/8/201$$pR85 -$$tPhys. Med. Biol.$$uC. van Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85 (2002). https://doi.org/10.1088/0031-9155/47/8/201$$v47$$y2002 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/B978-0-08-010586-4.50061-4$$uL. Landau, 56—On The Energy Loss Of Fast Particles By Ionization, Collected Papers of L.D. Landau, ed. by D. Ter Haar, Pergamon, p. 417 (1965). https://www.sciencedirect.com/science/article/pii/B9780080105864500614 000605052 999C5 $$1H Bichsel$$2Crossref$$9-- missing cx lookup --$$a10.1103/revmodphys.60.663$$p663 -$$tRev. Mod. Phys.$$uH. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys. 60, 663 (1988). https://doi.org/10.1103/revmodphys.60.663$$v60$$y1988 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/ptep/ptac097$$uParticle Data Group, R. Workman et al., Review of particle physics. Progr. Theor. Exp. Phys. 549, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097. https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434166/ptac097.pdf 000605052 999C5 $$1K Kölbig$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(84)90085-7$$p97 -$$tComput. Phys. Commun.$$uK. Kölbig, B. Schorr, A program package for the Landau distribution. Comput. Phys. Commun. 31, 97 (1984). https://doi.org/10.1016/0010-4655(84)90085-7$$v31$$y1984 000605052 999C5 $$1S Klein$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.radphyschem.2005.09.005$$p696 -$$tRadiat. Phys. Chem.$$uS. Klein, Pair production from 10 GeV to 10 ZeV. Radiat. Phys. Chem. 75, 696 (2006). https://doi.org/10.1016/j.radphyschem.2005.09.005$$v75$$y2006 000605052 999C5 $$1W Press$$2Crossref$$tNumerical Recipes 3rd Edition: The Art of Scientific Computing$$uW. Press et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)$$y2007 000605052 999C5 $$1M Piana$$2Crossref$$uM. Piana, Inversion of bremsstrahlung spectra emitted by solar plasma. AAP 288, 949 (1994)$$y1994 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/ICASSP.1993.319857$$uA. Mohammad-Djafari, On the estimation of hyperparameters in Bayesian approach of solving inverse problems, in 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, p. 495 (1993) 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-94-011-5430-7_16$$uA. Mohammad-Djafari, A full Bayesian approach for inverse problems, in Maximum Entropy and Bayesian Methods, ed. by K.M. Hanson and R.N. Silver (Springer Netherlands, Dordrecht, 1996), p. 135 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevAccelBeams.23.064001$$uT.G. Blackburn et al., Model-independent inference of laser intensity. Phys. Rev. Accel. Beams 23, 064001 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.064001. arXiv:1911.02349 000605052 999C5 $$1O Karacheban$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/10/08/P08008$$pP08008 -$$tJINST$$uO. Karacheban et al., Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II. JINST 10, P08008 (2015). https://doi.org/10.1088/1748-0221/10/08/P08008. arXiv:1504.04023 [physics.ins-det]$$v10$$y2015 000605052 999C5 $$2Crossref$$uB. Buonomo et al., A wide range electrons, photons, neutrons beam facility, in Proceedings of EPAC08, p. 3321 (2008) 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.110.023510$$uK. Fleck et al., Dependence on laser intensity of the number-weighted angular distribution of Compton-scattered photon beams (2024). arXiv:2402.03454 [physics.plasm-ph] 000605052 999C5 $$1W Shockley$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1710367$$p635 -$$tJ. Appl. Phys.$$uW. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9, 635 (1938). https://doi.org/10.1063/1.1710367$$v9$$y1938 000605052 999C5 $$2Crossref$$uCAEN company FERS-5200 Front-End Readout System, https://www.caen.it/subfamilies/fers-5200 000605052 999C5 $$2Crossref$$uCAEN User Manual UM7945, https://www.caen.it/?downloadfile=6184 000605052 999C5 $$2Crossref$$uWEEROC company, http://www.weeroc.com/en/products/citiroc 000605052 999C5 $$2Crossref$$uCAEN company SY5527 Universal Multichannel Power Supply System, https://www.caen.it/products/sy5527/, https://www.caen.it/products/a2519/, https://www.caen.it/products/a1561h/ 000605052 999C5 $$2Crossref$$uB. Dudar, MSc. Thesis (2020). https://agenda.linearcollider.org/event/8107/attachments/34048/55607/TSNUK_NPD_master_eng.pdf 000605052 999C5 $$1J Altegoer$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(97)01079-6$$p96 -$$tNucl. Instrum. Methods A$$uJ. Altegoer et al., The NOMAD experiment at the CERN SPS. Nucl. Instrum. Methods A 404, 96 (1998). https://doi.org/10.1016/S0168-9002(97)01079-6$$v404$$y1998 000605052 999C5 $$1K Ahmet$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(91)90547-4$$p275 -$$tNucl. Instrum. Methods A$$uK. Ahmet et al., The OPAL detector at LEP. Nucl. Instrum. Methods A 305, 275 (1991). https://doi.org/10.1016/0168-9002(91)90547-4$$v305$$y1991 000605052 999C5 $$1H Avakian$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(98)00540-3$$p69 -$$tNucl. Instrum. Methods A$$uH. Avakian et al., Performance of the electromagnetic calorimeter of the HERMES experiment. Nucl. Instrum. Methods A 417, 69 (1998). https://doi.org/10.1016/S0168-9002(98)00540-3. arXiv: hep-ex/9810004$$v417$$y1998 000605052 999C5 $$1M Kobayashi$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(94)90990-3$$p210 -$$tNucl. Instrum. Methods A$$uM. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101. Nucl. Instrum. Methods A 345, 210 (1994)$$v345$$y1994 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(94)90990-3$$uM. Kobayashi et al., Radiation hardness of lead glasses TF1 and TF101, tech. rep., KEK (1993). https://cds.cern.ch/record/259413 000605052 999C5 $$1AV Inyakin$$2Crossref$$9-- missing cx lookup --$$a10.1016/0167-5087(83)91296-6$$p103 -$$tNucl. Instrum. Methods$$uA.V. Inyakin et al., Investigation of the characteristics of lead glass $$\gamma$$ spectrometer radiators irradiated by high-energy particles. Nucl. Instrum. Methods 215, 103 (1983). https://doi.org/10.1016/0167-5087(83)91296-6$$v215$$y1983 000605052 999C5 $$1MY Balatz$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2005.01.328$$p114 -$$tNucl. Instrum. Methods A$$uM.Y. Balatz et al., The lead-glass electromagnetic calorimeter for the SELEX experiment. Nucl. Instrum. Methods A 545, 114 (2005). https://doi.org/10.1016/j.nima.2005.01.328$$v545$$y2005 000605052 999C5 $$1S Chatrchyan$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/3/08/S08004$$pS08004 -$$tJINST$$uS. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004$$v3$$y2008 000605052 999C5 $$1B Vormwald$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/9/08/C08012$$pC08012 -$$tJINST$$uB. Vormwald, Polarisation and beam energy measurement at a linear $$e^+e^-$$ collider. JINST 9, C08012 (2014). https://doi.org/10.1088/1748-0221/9/08/C08012$$v9$$y2014 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/NSSMIC.2011.6154596$$uM. Reinecke, Towards a full scale prototype of the CALICE Tile hadron calorimeter, in 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, p. 1171 (2011) 000605052 999C5 $$2Crossref$$uLEDTRONICS, Datasheet SML0603-395-TR 000605052 999C5 $$2Crossref$$uLUXE simulation software, (2021). https://github.com/LUXEsoftware/lxsim 000605052 999C5 $$1M Tanabashi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.030001$$tPhys. Rev. D$$uM. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018)$$v98$$y2018 000605052 999C5 $$1P Baesso$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/14/09/P09019$$pP09019 -$$tJINST$$uP. Baesso, D. Cussans, J. Goldstein, The AIDA-2020 TLU: a flexible trigger logic unit for test beam facilities. JINST 14, P09019 (2019). https://doi.org/10.1088/1748-0221/14/09/P09019. arXiv: 2005.00310 [physics.ins-det]$$v14$$y2019 000605052 999C5 $$2Crossref$$uTLU documentation, (2019). https://ohwr.org/project/fmc-mtlu 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2019.04.097$$uD. Cussans, Timing and synchronization of the DUNE neutrino detector. Nucl. Instr. Methods A 958, 162143 (2020). https://doi.org/10.1016/j.nima.2019.04.097 000605052 999C5 $$2Crossref$$uEUDAQ2 documentation, (2020). https://eudaq.github.io 000605052 999C5 $$2Crossref$$uE. Sombrowski et al., “jddd”: a Java DOOCS Data Display for the XFEL, in International Conference on Accelerator and Large Experimental Physics Control Systems, Knoxville. JACoW, Knoxville, p. 43 (2007). https://bib-pubdb1.desy.de/record/82503 000605052 999C5 $$2Crossref$$uR. Abela et al., XFEL: the European X-Ray Free-Electron Laser—Technical Design Report. DESY, Hamburg, p. 1 (2006). https://bib-pubdb1.desy.de/record/77248 000605052 999C5 $$2Crossref$$uF. Burkart, W. Decking, Extraction and XTD20 Transfer Line: Conceptual Design Report 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.4008390$$uK. Sloan et al., KeithSloan/GDML: 1.3 Alpha, version v1.3alpha (2020). https://doi.org/10.5281/zenodo.4008390 000605052 999C5 $$2Crossref$$uD. Nölle, Electron beam diagnostics for the European XFEL, in Proceedings of DIPAC09, Basel, TUOA04 (2009). https://accelconf.web.cern.ch/d09/papers/tuoa04.pdf 000605052 999C5 $$2Crossref$$uB. Keil et al., The European XFEL Beam Position Monitor System, in Proceedings of IPAC’10, Kyoto, MOPE064 (2010). http://accelconf.web.cern.ch/IPAC10/papers/mope064.pdf 000605052 999C5 $$2Crossref$$uL. Deniau et al., Upgrade of MAD-X for HL-LHC Project and FCC studies, in JACOW Proceedings of the 13th International Computational Accelerator Physics Conference ICAP2018, p. 2018 (2018) 000605052 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2020.107200$$uL.J. Nevay et al., BDSIM: an accelerator tracking code with particle-matter interactions. Comput. Phys. Commun. 252, 107200 (2020). https://doi.org/10.1016/j.cpc.2020.107200. arXiv:1808.10745 [physics.comp-ph] 000605052 999C5 $$2Crossref$$uhttps://flash.desy.de/ 000605052 999C5 $$1TT Böhlen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nds.2014.07.049$$p211 -$$tNucl. Data Sheets$$uT.T. Böhlen et al., The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211 (2014)$$v120$$y2014 000605052 999C5 $$1R Bähre$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/8/09/T09001$$pT09001 -$$tJINST$$uR. Bähre et al., Any light particle search II—Technical Design Report. JINST 8, T09001 (2013). https://doi.org/10.1088/1748-0221/8/09/T09001. arXiv:1302.5647 [physics.ins-det]$$v8$$y2013 000605052 999C5 $$2Crossref$$uBerthold, https://www.berthold.com, https://www.berthold.com/?eID=dumpFile &t=f &download=1 &logInUri=%2Fen%2Fmyberthold%2F &f=1094 &token=4aabc03604542ee462e31bc841b59febee612d4c 000605052 999C5 $$1S Park$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnucmat.2014.05.010$$p205 -$$tJ. Nucl. Mater.$$uS. Park, J. Jang, H. Lee, Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate. J. Nucl. Mater. 452, 205 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.010$$v452$$y2014 000605052 999C5 $$2Crossref$$uO. Borysov, Radiation dose for tracker electronics in the rack, https://indico.desy.de/event/33847/contributions/119752/attachments/72415/92841/background_sim_pcb_dose_21032022.pdf