000604606 001__ 604606
000604606 005__ 20250715171039.0
000604606 0247_ $$2INSPIRETeX$$aH1:2024pvu
000604606 0247_ $$2inspire$$ainspire:2769135
000604606 0247_ $$2arXiv$$aarXiv:2403.10134
000604606 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-06522
000604606 0247_ $$2doi$$a10.1140/epjc/s10052-024-12987-0
000604606 0247_ $$2altmetric$$aaltmetric:160837569
000604606 0247_ $$2WOS$$aWOS:001290693200001
000604606 0247_ $$2openalex$$aopenalex:W4400882961
000604606 037__ $$aPUBDB-2024-01184
000604606 041__ $$aEnglish
000604606 082__ $$a530
000604606 088__ $$2DESY$$aDESY-24-036
000604606 088__ $$2arXiv$$aarXiv:2403.10134
000604606 1001_ $$aAndreev, V.$$b0
000604606 245__ $$aMeasurement of groomed event shape observables in deep-inelastic electron-proton scattering at HERA
000604606 260__ $$aHeidelberg$$bSpringer$$c2024
000604606 3367_ $$2DRIVER$$aarticle
000604606 3367_ $$2DataCite$$aOutput Types/Journal article
000604606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734606560_1126024
000604606 3367_ $$2BibTeX$$aARTICLE
000604606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604606 3367_ $$00$$2EndNote$$aJournal Article
000604606 500__ $$a32 pages, 17 tables, 7 figures, version as accepted by EPJ C
000604606 520__ $$aThe H1 Collaboration at HERA reports the first measurement of groomed event shape observables in deep inelastic electron-proton scattering (DIS) at $\sqrt{s}=319$ GeV, using data recorded between the years 2003 and 2007 with an integrated luminosity of $351$ pb$^{-1}$. Event shapes provide incisive probes of perturbative and non-perturbative QCD. Grooming techniques have been used for jet measurements in hadronic collisions; this paper presents the first application of grooming to DIS data. The analysis is carried out in the Breit frame, utilizing the novel Centauro jet clustering algorithm that is designed for DIS event topologies. Events are required to have squared momentum-transfer $Q^2 > 150$ GeV$^2$ and inelasticity $ 0.2 < y < 0.7$. We report measurements of the production cross section of groomed event 1-jettiness and groomed invariant mass for several choices of grooming parameter. Monte Carlo model calculations and analytic calculations based on Soft Collinear Effective Theory are compared to the measurements.
000604606 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000604606 542__ $$2Crossref$$i2024-07-22$$uhttps://creativecommons.org/licenses/by/4.0
000604606 542__ $$2Crossref$$i2024-07-22$$uhttps://creativecommons.org/licenses/by/4.0
000604606 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000604606 650_7 $$2INSPIRE$$aelectron p: scattering
000604606 650_7 $$2INSPIRE$$aquantum chromodynamics: nonperturbative
000604606 650_7 $$2INSPIRE$$acorrection: nonperturbative
000604606 650_7 $$2INSPIRE$$aquantum chromodynamics: perturbation theory
000604606 650_7 $$2INSPIRE$$ahadron hadron: interaction
000604606 650_7 $$2INSPIRE$$aelectron p: deep inelastic scattering
000604606 650_7 $$2INSPIRE$$aevent shape analysis
000604606 650_7 $$2INSPIRE$$ashape analysis: jet
000604606 650_7 $$2INSPIRE$$aDESY HERA Stor
000604606 650_7 $$2INSPIRE$$aH1
000604606 650_7 $$2INSPIRE$$anumerical calculations: Monte Carlo
000604606 650_7 $$2INSPIRE$$atopology
000604606 650_7 $$2INSPIRE$$asoft collinear effective theory
000604606 650_7 $$2INSPIRE$$acentauro
000604606 650_7 $$2INSPIRE$$aBreit frame
000604606 650_7 $$2INSPIRE$$amomentum transfer
000604606 650_7 $$2INSPIRE$$achannel cross section: measured
000604606 650_7 $$2INSPIRE$$atrack data analysis: jet
000604606 650_7 $$2INSPIRE$$adata analysis method
000604606 650_7 $$2INSPIRE$$aexperimental results
000604606 650_7 $$2INSPIRE$$a319 GeV-cms
000604606 693__ $$0EXP:(DE-588)4443767-5$$1EXP:(DE-588)4159571-3$$5EXP:(DE-588)4443767-5$$aHERA$$eHERA: H1$$x0
000604606 7001_ $$aArratia, M.$$b1
000604606 7001_ $$aBaghdasaryan, A.$$b2
000604606 7001_ $$aBaty, A.$$b3
000604606 7001_ $$aBegzsuren, K.$$b4
000604606 7001_ $$aBolz, A.$$b5
000604606 7001_ $$aBoudry, V.$$b6
000604606 7001_ $$aBrandt, G.$$b7
000604606 7001_ $$aBritzger, D.$$b8
000604606 7001_ $$aBuniatyan, A.$$b9
000604606 7001_ $$aBystritskaya, L.$$b10
000604606 7001_ $$aCampbell, A. J.$$b11
000604606 7001_ $$aCantun Avila, K. B.$$b12
000604606 7001_ $$aCerny, K.$$b13
000604606 7001_ $$aChekelian, V.$$b14
000604606 7001_ $$aChen, Z.$$b15
000604606 7001_ $$aContreras, J. G.$$b16
000604606 7001_ $$aCvach, J.$$b17
000604606 7001_ $$aDainton, J. B.$$b18
000604606 7001_ $$aDaum, K.$$b19
000604606 7001_ $$aDeshpande, A.$$b20
000604606 7001_ $$aDiaconu, C.$$b21
000604606 7001_ $$aDrees, A.$$b22
000604606 7001_ $$0P:(DE-H253)PIP1002732$$aEckerlin, G.$$b23
000604606 7001_ $$aEgli, S.$$b24
000604606 7001_ $$aElsen, E.$$b25
000604606 7001_ $$aFavart, L.$$b26
000604606 7001_ $$aFedotov, A.$$b27
000604606 7001_ $$aFeltesse, J.$$b28
000604606 7001_ $$aFleischer, M.$$b29
000604606 7001_ $$aFomenko, A.$$b30
000604606 7001_ $$aGal, C.$$b31
000604606 7001_ $$aGayler, J.$$b32
000604606 7001_ $$aGoerlich, L.$$b33
000604606 7001_ $$aGogitidze, N.$$b34
000604606 7001_ $$aGouzevitch, M.$$b35
000604606 7001_ $$aGrab, C.$$b36
000604606 7001_ $$aGreenshaw, T.$$b37
000604606 7001_ $$aGrindhammer, G.$$b38
000604606 7001_ $$aHaidt, D.$$b39
000604606 7001_ $$aHenderson, R. C. W.$$b40
000604606 7001_ $$aHessler, J.$$b41
000604606 7001_ $$aHladký, J.$$b42
000604606 7001_ $$aHoffmann, D.$$b43
000604606 7001_ $$aHorisberger, R.$$b44
000604606 7001_ $$aHreus, T.$$b45
000604606 7001_ $$aHuber, F.$$b46
000604606 7001_ $$aJacobs, P. M.$$b47
000604606 7001_ $$aJacquet, M.$$b48
000604606 7001_ $$aJanssen, T.$$b49
000604606 7001_ $$aJung, A. W.$$b50
000604606 7001_ $$aKatzy, J.$$b51
000604606 7001_ $$aKiesling, C.$$b52
000604606 7001_ $$aKlein, M.$$b53
000604606 7001_ $$0P:(DE-H253)PIP1002217$$aKleinwort, C.$$b54
000604606 7001_ $$aKlest, H. T.$$b55
000604606 7001_ $$0P:(DE-H253)PIP1005858$$aKogler, R.$$b56
000604606 7001_ $$aKostka, P.$$b57
000604606 7001_ $$aKretzschmar, J.$$b58
000604606 7001_ $$aKrücker, D.$$b59
000604606 7001_ $$aKrüger, K.$$b60
000604606 7001_ $$aLandon, M. P. J.$$b61
000604606 7001_ $$aLange, W.$$b62
000604606 7001_ $$aLaycock, P.$$b63
000604606 7001_ $$aLee, S. H.$$b64
000604606 7001_ $$0P:(DE-H253)PIP1002089$$aLevonian, S.$$b65
000604606 7001_ $$aLi, W.$$b66
000604606 7001_ $$aLin, J.$$b67
000604606 7001_ $$0P:(DE-H253)PIP1002126$$aLipka, K.$$b68
000604606 7001_ $$aList, B.$$b69
000604606 7001_ $$aList, J.$$b70
000604606 7001_ $$aLobodzinski, B.$$b71
000604606 7001_ $$aLong, O. R.$$b72
000604606 7001_ $$aMalinovski, E.$$b73
000604606 7001_ $$aMartyn, H.-U.$$b74
000604606 7001_ $$aMaxfield, S. J.$$b75
000604606 7001_ $$aMehta, A.$$b76
000604606 7001_ $$aMeyer, A. B.$$b77
000604606 7001_ $$aMeyer, J.$$b78
000604606 7001_ $$aMikocki, S.$$b79
000604606 7001_ $$aMikuni, V. M.$$b80
000604606 7001_ $$aMondal, M. M.$$b81
000604606 7001_ $$aMüller, K.$$b82
000604606 7001_ $$aNachman, B.$$b83
000604606 7001_ $$aNaumann, Th.$$b84
000604606 7001_ $$aNewman, P. R.$$b85
000604606 7001_ $$0P:(DE-H253)PIP1001849$$aNiebuhr, C.$$b86
000604606 7001_ $$aNowak, G.$$b87
000604606 7001_ $$aOlsson, J. E.$$b88
000604606 7001_ $$aOzerov, D.$$b89
000604606 7001_ $$aPark, S.$$b90
000604606 7001_ $$aPascaud, C.$$b91
000604606 7001_ $$aPatel, G. D.$$b92
000604606 7001_ $$aPerez, E.$$b93
000604606 7001_ $$aPetrukhin, A.$$b94
000604606 7001_ $$aPicuric, I.$$b95
000604606 7001_ $$0P:(DE-H253)PIP1001805$$aPitzl, D.$$b96
000604606 7001_ $$aPolifka, R.$$b97
000604606 7001_ $$aPreins, S.$$b98
000604606 7001_ $$aRadescu, V.$$b99
000604606 7001_ $$aRaicevic, N.$$b100
000604606 7001_ $$aRavdandorj, T.$$b101
000604606 7001_ $$aReichelt, D.$$b102
000604606 7001_ $$aReimer, P.$$b103
000604606 7001_ $$aRizvi, E.$$b104
000604606 7001_ $$aRobmann, P.$$b105
000604606 7001_ $$aRoosen, R.$$b106
000604606 7001_ $$aRostovtsev, A.$$b107
000604606 7001_ $$aRotaru, M.$$b108
000604606 7001_ $$aSankey, D. P. C.$$b109
000604606 7001_ $$aSauter, M.$$b110
000604606 7001_ $$aSauvan, E.$$b111
000604606 7001_ $$0P:(DE-H253)PIP1001586$$aSchmitt, S.$$b112
000604606 7001_ $$aSchmookler, B. A.$$b113
000604606 7001_ $$aSchnell, G.$$b114
000604606 7001_ $$aSchoeffel, L.$$b115
000604606 7001_ $$aSchöning, A.$$b116
000604606 7001_ $$aSchumann, S.$$b117
000604606 7001_ $$aSefkow, F.$$b118
000604606 7001_ $$aShushkevich, S.$$b119
000604606 7001_ $$aSoloviev, Y.$$b120
000604606 7001_ $$aSopicki, P.$$b121
000604606 7001_ $$aSouth, D.$$b122
000604606 7001_ $$aSpecka, A.$$b123
000604606 7001_ $$aSteder, M.$$b124
000604606 7001_ $$aStella, B.$$b125
000604606 7001_ $$aStöcker, L.$$b126
000604606 7001_ $$aStraumann, U.$$b127
000604606 7001_ $$aSun, C.$$b128
000604606 7001_ $$aSykora, T.$$b129
000604606 7001_ $$aThompson, P. D.$$b130
000604606 7001_ $$aAcosta, F. Torales$$b131
000604606 7001_ $$aTraynor, D.$$b132
000604606 7001_ $$aTseepeldorj, B.$$b133
000604606 7001_ $$aTu, Z.$$b134
000604606 7001_ $$aTustin, G.$$b135
000604606 7001_ $$aValkárová, A.$$b136
000604606 7001_ $$aVallée, C.$$b137
000604606 7001_ $$aVan Mechelen, P.$$b138
000604606 7001_ $$aWegener, D.$$b139
000604606 7001_ $$aWünsch, E.$$b140
000604606 7001_ $$aŽáček, J.$$b141
000604606 7001_ $$aZhang, J.$$b142
000604606 7001_ $$aZhang, Z.$$b143
000604606 7001_ $$aŽlebčík, R.$$b144
000604606 7001_ $$aZohrabyan, H.$$b145
000604606 7001_ $$aZomer, F.$$b146
000604606 7001_ $$0P:(DE-HGF)0$$aH1 Collaboration$$b147$$eCollaboration author
000604606 77318 $$2Crossref$$3journal-article$$a10.1140/epjc/s10052-024-12987-0$$bSpringer Science and Business Media LLC$$d2024-07-22$$n7$$p718$$tThe European Physical Journal C$$v84$$x1434-6052$$y2024
000604606 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-024-12987-0$$gVol. 84, no. 7, p. 718$$n7$$p718$$tThe European physical journal / C$$v84$$x1434-6052$$y2024
000604606 7870_ $$0PUBDB-2024-06522$$aAndreev, V. et.al.$$d2024$$iIsParent$$rarXiv:2403.10134 ; DESY-24-036$$tMeasurement of groomed event shape observables in deep-inelastic electron-proton scattering at HERA
000604606 8564_ $$uhttps://bib-pubdb1.desy.de/record/604606/files/HTML-Approval_of_scientific_publication.html
000604606 8564_ $$uhttps://bib-pubdb1.desy.de/record/604606/files/PDF-Approval_of_scientific_publication.pdf
000604606 8564_ $$uhttps://bib-pubdb1.desy.de/record/604606/files/s10052-024-12987-0-1.pdf$$yOpenAccess
000604606 8564_ $$uhttps://bib-pubdb1.desy.de/record/604606/files/s10052-024-12987-0-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000604606 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-28$$eAPC$$jFlatrate$$lSCOAP3
000604606 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-28$$eAPC$$jStorniert$$lSCOAP3$$zDFG OAPK (Projekt)
000604606 8767_ $$8225738$$92024-06-27$$a52894939$$d2025-03-28$$eAPC$$jZahlung erfolgt$$lSCOAP3$$zDFG OAPK (Projekt)
000604606 909CO $$ooai:bib-pubdb1.desy.de:604606$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002732$$aDeutsches Elektronen-Synchrotron$$b23$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002217$$aDeutsches Elektronen-Synchrotron$$b54$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005858$$aDeutsches Elektronen-Synchrotron$$b56$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002089$$aDeutsches Elektronen-Synchrotron$$b65$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002126$$aDeutsches Elektronen-Synchrotron$$b68$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001849$$aDeutsches Elektronen-Synchrotron$$b86$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001805$$aDeutsches Elektronen-Synchrotron$$b96$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001586$$aDeutsches Elektronen-Synchrotron$$b112$$kDESY
000604606 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-HGF)0$$aDeutsches Elektronen-Synchrotron$$b147$$kDESY
000604606 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000604606 9141_ $$y2024
000604606 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000604606 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000604606 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:05:14Z
000604606 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:05:14Z
000604606 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000604606 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000604606 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2023-10-21
000604606 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000604606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:05:14Z
000604606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2022$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
000604606 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
000604606 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000604606 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000604606 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000604606 9201_ $$0I:(DE-H253)H1-20120806$$kH1$$lH1 Kollaboration$$x0
000604606 9801_ $$aFullTexts
000604606 980__ $$ajournal
000604606 980__ $$aVDB
000604606 980__ $$aUNRESTRICTED
000604606 980__ $$aI:(DE-H253)H1-20120806
000604606 980__ $$aAPC
000604606 999C5 $$1G Hanson$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.35.1609$$p1609 -$$tPhys. Rev. Lett.$$uG. Hanson et al., Evidence for jet structure in hadron production by e+ e- annihilation. Phys. Rev. Lett. 35, 1609–1612 (1975). https://doi.org/10.1103/PhysRevLett.35.1609$$v35$$y1975
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(79)90830-X$$uTASSO Collaboration, R. Brandelik et al., Evidence for planar events in e+ e- annihilation at high-energies. Phys. Lett. B 86, 243–249 (1979). https://doi.org/10.1016/0370-2693(79)90830-X
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(81)90505-0$$uJADE Collaboration, W. Bartel et al., Experimental study of jets in electron–positron annihilation. Phys. Lett. B 101, 129–134 (1981). https://doi.org/10.1016/0370-2693(81)90505-0
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(85)90518-0$$uDELCO Collaboration, M. Sakuda et al., Properties of bottom quark jets in $$e^+ e^-$$ annihilation at 29-GeV. Phys. Lett. B 152, 399–403 (1985) . https://doi.org/10.1016/0370-2693(85)90518-0
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(87)90475-8$$uCELLO Collaboration, H.J. Behrend et al., A search for hadronic events with low thrust and an isolated lepton. Phys. Lett. B 193, 157–162 (1987) . https://doi.org/10.1016/0370-2693(87)90475-8
000604606 999C5 $$1D Bender$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.31.1$$p1 -$$tPhys. Rev. D$$uD. Bender et al., Study of quark fragmentation at 29-GeV: global jet parameters and single particle distributions. Phys. Rev. D 31, 1 (1985). https://doi.org/10.1103/PhysRevD.31.1$$v31$$y1985
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s002880050295$$uDELPHI Collaboration, P. Abreu et al., Tuning and test of fragmentation models based on identified particles and precision event shape data. Z. Phys. C 73, 11–60 (1996). https://doi.org/10.1007/s002880050295
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s002880050462$$uOPAL Collaboration, K. Ackerstaff et al., QCD studies with e+ e- annihilation data at 161-GeV. Z. Phys. C 75, 193–207 (1997). https://doi.org/10.1007/s002880050462
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-1573(97)00045-8$$uALEPH Collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector. Phys. Rep. 294, 1–165 (1998). https://doi.org/10.1016/S0370-1573(97)00045-8
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01552315$$uOPAL Collaboration, M.Z. Akrawy et al., A measurement of global event shape distributions in the hadronic decays of the Z. Z. Phys. C 47, 505–522 (1990). https://doi.org/10.1007/BF01552315
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01558288$$uL3 Collaboration, B. Adeva et al., Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance. Z. Phys. C 55, 39–62 (1992). https://doi.org/10.1007/BF01558288
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2005-02120-6$$uOPAL Collaboration, G. Abbiendi et al., Measurement of event shape distributions and moments in e+ e- -$$>$$ hadrons at 91-GeV–209-GeV and a determination of alpha(s). Eur. Phys. J. C 40, 287–316 (2005). https://doi.org/10.1140/epjc/s2005-02120-6. arXiv:hep-ex/0503051
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(97)00754-5$$uH1 Collaboration, C. Adloff et al., Measurement of event shape variables in deep inelastic e p scattering. Phys. Lett. B 406, 256–270 (1997). https://doi.org/10.1016/S0370-2693(97)00754-5. arXiv:hep-ex/9706002
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100520000344$$uH1 Collaboration, C. Adloff et al., Investigation of power corrections to event shape variables measured in deep inelastic scattering Eur. Phys. J. C 14, 255–269 (2000). https://doi.org/10.1007/s100520000344. arXiv:hep-ex/9912052. [Erratum: Eur. Phys. J. C 18, 417–419 (2000)]
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2006-02493-x$$uH1 Collaboration, A. Aktas et al., Measurement of event shape variables in deep-inelastic scattering at HERA. Eur. Phys. J. C 46, 343–356 (2006). https://doi.org/10.1140/epjc/s2006-02493-x. arXiv:hep-ex/0512014
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2003-01148-x$$uZEUS Collaboration, S. Chekanov et al., Measurement of event shapes in deep inelastic scattering at HERA. Eur. Phys. J. C 27, 531–545 (2003). https://doi.org/10.1140/epjc/s2003-01148-x. arXiv:hep-ex/0211040
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2006.05.016$$uZEUS Collaboration, S. Chekanov et al., Event shapes in deep inelastic scattering at HERA. Nucl. Phys. B 767, 1–28 (2007). https://doi.org/10.1016/j.nuclphysb.2006.05.016. arXiv:hep-ex/0604032
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2023)194$$uM. Knobbe, D. Reichelt, S. Schumann, (N)NLO+NLL$$^\prime $$ accurate predictions for plain and groomed 1-jettiness in neutral current DIS. JHEP 09, 194 (2023). https://doi.org/10.1007/JHEP09(2023)194. arXiv:2306.17736
000604606 999C5 $$1YL Dokshitzer$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)00548-Y$$p451 -$$tPhys. Lett. B$$uY.L. Dokshitzer, B.R. Webber, Calculation of power corrections to hadronic event shapes. Phys. Lett. B 352, 451–455 (1995). https://doi.org/10.1016/0370-2693(95)00548-Y. arXiv:hep-ph/9504219$$v352$$y1995
000604606 999C5 $$1M Dasgupta$$2Crossref$$9-- missing cx lookup --$$a10.1007/s100520050103$$p539 -$$tEur. Phys. J. C$$uM. Dasgupta, B.R. Webber, Power corrections to event shapes in deep inelastic scattering. Eur. Phys. J. C 1, 539–546 (1998). https://doi.org/10.1007/s100520050103. arXiv:hep-ph/9704297$$v1$$y1998
000604606 999C5 $$1V Antonelli$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2000/02/001$$p001 -$$tJHEP$$uV. Antonelli, M. Dasgupta, G.P. Salam, Resummation of thrust distributions in DIS. JHEP 02, 001 (2000). https://doi.org/10.1088/1126-6708/2000/02/001. arXiv:hep-ph/9912488$$v02$$y2000
000604606 999C5 $$1M Dasgupta$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(01)00725-0$$p323 -$$tPhys. Lett. B$$uM. Dasgupta, G.P. Salam, Resummation of nonglobal QCD observables. Phys. Lett. B 512, 323–330 (2001). https://doi.org/10.1016/S0370-2693(01)00725-0. arXiv:hep-ph/0104277$$v512$$y2001
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.51.962$$uSLD Collaboration, K. Abe et al., Measurement of alpha-s (M(Z)**2) from hadronic event observables at the Z0 resonance. Phys. Rev. D 51, 962–984 (1995). https://doi.org/10.1103/PhysRevD.51.962. arXiv:hep-ex/9501003
000604606 999C5 $$1T Becher$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/07/034$$p034 -$$tJHEP$$uT. Becher, M.D. Schwartz, A precise determination of $$\alpha _s$$ from LEP thrust data using effective field theory. JHEP 07, 034 (2008). https://doi.org/10.1088/1126-6708/2008/07/034. arXiv:0803.0342$$v07$$y2008
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/12/094$$uA. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, NNLO corrections to event shapes in e+ e- annihilation. JHEP 12, 094 (2007). https://doi.org/10.1088/1126-6708/2007/12/094. arXiv:0711.4711
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/08/036$$uG. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, G. Luisoni, H. Stenzel, Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e+e- annihilations. JHEP 0908, 036 (2009). https://doi.org/10.1088/1126-6708/2009/08/036. arXiv:0906.3436
000604606 999C5 $$1S Bethke$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-009-1173-1$$p689 -$$tEur. Phys. J. C$$uS. Bethke, The world average of alpha(s). Eur. Phys. J. C 64(2009), 689–703 (2009). https://doi.org/10.1140/epjc/s10052-009-1173-1. arXiv:0908.1135$$v64$$y2009
000604606 999C5 $$1AH Hoang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.094018$$p094018 -$$tPhys. Rev. D$$uA.H. Hoang, D.W. Kolodrubetz, V. Mateu, I.W. Stewart, Precise determination of $$\alpha _s$$ from the $$C$$-parameter distribution. Phys. Rev. D 91, 094018 (2015). https://doi.org/10.1103/PhysRevD.91.094018. arXiv:1501.04111$$v91$$y2015
000604606 999C5 $$1S Marzani$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2019)179$$p179 -$$tJHEP$$uS. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes, Fitting the strong coupling constant with soft-drop thrust. JHEP 11, 179 (2019). https://doi.org/10.1007/JHEP11(2019)179. arXiv:1906.10504$$v11$$y2019
000604606 999C5 $$1PZ Skands$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.074018$$p074018 -$$tPhys. Rev. D$$uP.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010). https://doi.org/10.1103/PhysRevD.82.074018. arXiv:1005.3457$$v82$$y2010
000604606 999C5 $$1P Ilten$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/12/04/P04028$$pP04028 -$$tJINST$$uP. Ilten, M. Williams, Y. Yang, Event generator tuning using Bayesian optimization. JINST 12, P04028 (2017). https://doi.org/10.1088/1748-0221/12/04/P04028. arXiv:1610.08328$$v12$$y2017
000604606 999C5 $$1P Skands$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3024-y$$p3024 -$$tEur. Phys. J. C$$uP. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74(2014), 3024 (2013). https://doi.org/10.1140/epjc/s10052-014-3024-y. arXiv:1404.5630$$v74$$y2013
000604606 999C5 $$1S La Cagnina$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/18/10/P10033$$pP10033 -$$tJINST.$$uS. La Cagnina, K. Kröninger, S. Kluth, A. Verbytskyi, A Bayesian tune of the Herwig Monte Carlo event generator. JINST. 18, P10033 (2023). https://doi.org/10.1088/1748-0221/18/10/P10033. arXiv:2302.01139$$v18$$y2023
000604606 999C5 $$1GP Salam$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-010-1314-6$$p637 -$$tEur. Phys. J. C$$uG.P. Salam, Towards Jetography. Eur. Phys. J. C 67, 637–686 (2010). https://doi.org/10.1140/epjc/s10052-010-1314-6. arXiv:0906.1833$$v67$$y2010
000604606 999C5 $$1JM Butterworth$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.242001$$tPhys. Rev. Lett.$$uJ.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). https://doi.org/10.1103/PhysRevLett.100.242001. arXiv:0802.2470$$v100$$y2008
000604606 999C5 $$1J Thaler$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2011)015$$p015 -$$tJHEP$$uJ. Thaler, K. Van Tilburg, Identifying boosted objects with N-subjettiness. JHEP 03, 015 (2011). https://doi.org/10.1007/JHEP03(2011)015. arXiv:1011.2268$$v03$$y2011
000604606 999C5 $$1M Dasgupta$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2013)029$$p029 -$$tJHEP$$uM. Dasgupta, A. Fregoso, S. Marzani, G.P. Salam, Towards an understanding of jet substructure. JHEP 09, 029 (2013). https://doi.org/10.1007/JHEP09(2013)029. arXiv:1307.0007$$v09$$y2013
000604606 999C5 $$1AJ Larkoski$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2014)146$$p146 -$$tJHEP$$uA.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, Soft drop. JHEP 05, 146 (2014). https://doi.org/10.1007/JHEP05(2014)146. arXiv:1402.2657$$v05$$y2014
000604606 999C5 $$1Z-B Kang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2019.04.018$$p41 -$$tPhys. Lett. B$$uZ.-B. Kang, K. Lee, X. Liu, F. Ringer, Soft drop groomed jet angularities at the LHC. Phys. Lett. B 793, 41–47 (2019). https://doi.org/10.1016/j.physletb.2019.04.018. arXiv:1811.06983$$v793$$y2019
000604606 999C5 $$1AJ Larkoski$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2019.11.001$$p1 -$$tPhys. Rep.$$uA.J. Larkoski, I. Moult, B. Nachman, Jet substructure at the large hadron collider: a review of recent advances in theory and machine learning. Phys. Rep. 841, 1–63 (2020). https://doi.org/10.1016/j.physrep.2019.11.001. arXiv:1709.04464$$v841$$y2020
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-72858-8$$uR. Kogler, Advances in jet substructure at the LHC: algorithms, measurements and searches for new physical phenomena, Springer tracts in modern physics, vol. 284 (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-72858-8. https://bib-pubdb1.desy.de/record/470437
000604606 999C5 $$2Crossref$$uH1 Collaboration, V. Andreev et al., Unbinned Deep Learning Jet Substructure Measurement in High $$Q^2$$ ep collisions at HERA. arXiv:2303.13620
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.91.045003$$uR. Kogler et al., Jet substructure at the large hadron collider: experimental review. Rev. Mod. Phys. 91, 045003 (2019). https://doi.org/10.1103/RevModPhys.91.045003. arXiv:1803.06991
000604606 999C5 $$2Crossref$$uCMS, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, CMS-PAS-JME-09-001, CMS-PAS-JME-09-001 (2009)
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2023)244$$uALICE Collaboration, S. Acharya et al., Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at $$ \sqrt{s} $$ = 5.02 TeV. JHEP 05, 244 (2023). https://doi.org/10.1007/JHEP05(2023)244. arXiv:2204.10246
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2013)076$$uATLAS Collaboration, G. Aad et al., Performance of jet substructure techniques for large-$$R$$ jets in proton-proton collisions at $$\sqrt{s}$$ = 7 TeV using the ATLAS detector. JHEP 09, 076 (2013). https://doi.org/10.1007/JHEP09(2013)076. arXiv:1306.4945
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/11/113013$$uATLAS Collaboration, G. Aad et al., Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in $$pp$$ collisions at $${\sqrt{s}}$$ = 7 TeV with the ATLAS detector. New J. Phys. 16, 113013 (2014). https://doi.org/10.1088/1367-2630/16/11/113013. arXiv:1407.0800
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-016-4395-z$$uATLAS Collaboration, G. Aad et al., Performance of pile-up mitigation techniques for jets in $$pp$$ collisions at $$\sqrt{s}=8$$ TeV using the ATLAS detector. Eur. Phys. J. C. 76, 581 (2016). https://doi.org/10.1140/epjc/s10052-016-4395-z. arXiv:1510.03823
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2018)161$$uCMS Collaboration, A.M. Sirunyan et al., Measurement of the groomed jet mass in PbPb and pp collisions at $$ \sqrt{s_{{\rm NN}}}=5.02 $$ TeV. JHEP 10, 161 (2018). https://doi.org/10.1007/JHEP10(2018)161. arXiv:1805.05145
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP11(2018)113$$uCMS Collaboration, A.M. Sirunyan et al., Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $$ \sqrt{s}=13 $$ TeV. JHEP 11, 113 (2018). https://doi.org/10.1007/JHEP11(2018)113. arXiv:1807.05974
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135227$$uALICE Collaboration, S. Acharya et al., Exploration of jet substructure using iterative declustering in pp and Pb–Pb collisions at LHC energies. Phys. Lett. B 802, 135227 (2020). https://doi.org/10.1016/j.physletb.2020.135227. arXiv:1905.02512
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2020.135991$$uATLAS Collaboration, G. Aad et al., Measurement of the jet mass in high transverse momentum $$Z(\rightarrow b{\overline{b}})\gamma $$ production at $$\sqrt{s}= 13$$ TeV using the ATLAS detector. Phys. Lett. B 812, 135991 (2021). https://doi.org/10.1016/j.physletb.2020.135991. arXiv:1907.07093
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.101.052007$$uATLAS Collaboration, G. Aad et al., Measurement of soft-drop jet observables in $$pp$$ collisions with the ATLAS detector at $$\sqrt{s}$$ =13 TeV. Phys. Rev. D 101, 052007 (2020). https://doi.org/10.1103/PhysRevD.101.052007. arXiv:1912.09837
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.052007$$uSTAR Collaboration, M. Abdallah et al., Invariant jet mass measurements in $$pp$$ collisions at $$\sqrt{s} = 200$$ GeV at RHIC. Phys. Rev. D 104, 052007 (2021). https://doi.org/10.1103/PhysRevD.104.052007. arXiv:2103.13286
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2021)003$$uALICE Collaboration, S. Acharya et al., First measurements of N-subjettiness in central Pb-Pb collisions at $$ \sqrt{s_{{\rm NN}}} $$ = 2.76 TeV. JHEP 10 003, (2021). https://doi.org/10.1007/JHEP10(2021)003. arXiv:2105.04936
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP05(2022)061$$uALICE Collaboration, S. Acharya et al., Measurements of the groomed and ungroomed jet angularities in pp collisions at $$ \sqrt{s} $$ = 5.02 TeV. JHEP 05, 061 (2022). https://doi.org/10.1007/JHEP05(2022)061. arXiv:2107.11303
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.107.094008$$uL. Cunqueiro, D. Napoletano, A. Soto-Ontoso, Dead-cone searches in heavy-ion collisions using the jet tree. Phys. Rev. D 107, 094008 (2023). https://doi.org/10.1103/PhysRevD.107.094008. arXiv:2211.11789
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.192301$$uALICE Collaboration, S. Acharya et al., Measurements of groomed-jet substructure of charm jets tagged by D0 mesons in proton-proton collisions at s=13 TeV. Phys. Rev. Lett. 131, 192301 (2023). https://doi.org/10.1103/PhysRevLett.131.192301. arXiv:2208.04857
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.142302$$uCMS Collaboration, A.M. Sirunyan et al., Measurement of the Splitting Function in $$pp$$ and Pb-Pb Collisions at $$\sqrt{s_{{{\rm NN}}}} =$$ 5.02 TeV. Phys. Rev. Lett. 120, 142302 (2018). https://doi.org/10.1103/PhysRevLett.120.142302. arXiv:1708.09429
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.128.102001$$uALICE Collaboration, S. Acharya et al., Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb$$-$$Pb collisions at $$\sqrt{s_{NN}} = 5.02$$ TeV. Phys. Rev. Lett. 128, 102001 (2022). https://doi.org/10.1103/PhysRevLett.128.102001. arXiv:2107.12984
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.105.044906$$uSTAR Collaboration, M.S. Abdallah et al., Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $$\sqrt{S_{NN}}$$ =200 GeV. Phys. Rev. C 105, 044906 (2022). https://doi.org/10.1103/PhysRevC.105.044906. arXiv:2109.09793
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevC.107.054909$$uATLAS Collaboration, G. Aad et al., Measurement of substructure-dependent jet suppression in Pb+Pb collisions at 5.02 TeV with the ATLAS detector. Phys. Rev. C 107, 054909 (2023). https://doi.org/10.1103/PhysRevC.107.054909. arXiv:2211.11470
000604606 999C5 $$2Crossref$$uALICE Collaboration, S. Acharya et al., Measurement of the angle between jet axes in Pb$$-$$Pb collisions at $$\sqrt{s_{{\rm NN}}} = 5.02$$ TeV. arXiv:2303.13347
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01410449$$uJADE Collaboration, W. Bartel et al., Experimental studies on multi-jet production in e+ e- annihilation at PETRA energies. Z. Phys. C 33, 23 (1986). https://doi.org/10.1007/BF01410449
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01547419$$uTASSO Collaboration, M. Althoff et al., Jet production and fragmentation in e+ e- annihilation at 12-GeV to 43-GeV. Z. Phys. C 22, 307–340 (1984). https://doi.org/10.1007/BF01547419
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(90)91983-I$$uOPAL Collaboration, M.Z. Akrawy et al., A study of jet production rates and a test of QCD on the Z0 resonance. Phys. Lett. B 235, 389–398 (1990). https://doi.org/10.1016/0370-2693(90)91983-I
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(90)91065-J$$uDELPHI Collaboration, P. Abreu et al., A comparison of jet production rates on the Z0 resonance to perturbative QCD. Phys. Lett. B 247, 167–176 (1990). https://doi.org/10.1016/0370-2693(90)91065-J
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2005-02390-x$$uDELPHI Collaboration, J. Abdallah et al., Charged particle multiplicity in three-jet events and two-gluon systems. Eur. Phys. J. C 44, 311–331 (2005). https://doi.org/10.1140/epjc/s2005-02390-x. arXiv:hep-ex/0510025
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s002880050059$$uOPAL Collaboration, G. Alexander et al., A comparison of $$b$$ and $$u d s$$ quark jets to gluon jets. Z. Phys. C 69, 543–560 (1996). https://doi.org/10.1007/s002880050059
000604606 999C5 $$1MR Adams$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.69.1026$$p1026 -$$tPhys. Rev. Lett.$$uM.R. Adams et al., First measurements of jet production rates in deep-inelastic lepton-proton scattering. Phys. Rev. Lett. 69, 1026–1029 (1992). https://doi.org/10.1103/PhysRevLett.69.1026$$v69$$y1992
000604606 999C5 $$1MR Adams$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.466$$p466 -$$tPhys. Rev. Lett.$$uM.R. Adams et al., $${\mathit{q}}^{2}$$ dependence of the average squared transverse energy of jets in deep-inelastic muon-nucleon scattering with comparison to perturbative qcd predictions. Phys. Rev. Lett. 72, 466–469 (1994). https://doi.org/10.1103/PhysRevLett.72.466$$v72$$y1994
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100529801046$$uH1 Collaboration, C. Adloff et al., Diffractive dijet production at HERA. Eur. Phys. J. C 6, 421 (1999). https://doi.org/10.1007/s100529801046. arXiv:hep-ex/9808013
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100520100621$$uH1 Collaboration, C. Adloff et al., Measurement and QCD analysis of jet cross-sections in deep inelastic positron-proton collisions at $$\sqrt{s}$$ of 300 GeV. Eur. Phys. J. C 19, 289–311 (2001). https://doi.org/10.1007/s100520100621. arXiv:hep-ex/0010054
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(99)00118-2$$uH1 Collaboration, C. Adloff et al., Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA. Nucl. Phys. B 545, 3–20 (1999). https://doi.org/10.1016/S0550-3213(99)00118-2. arXiv:hep-ex/9901010
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)00804-T$$uH1 Collaboration, S. Aid et al., Transverse energy and forward jet production in the low x regime at HERA. Phys. Lett. B 356, 118–128 (1995). https://doi.org/10.1016/0370-2693(95)00804-T. arXiv:hep-ex/9506012
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(98)00745-7$$uH1 Collaboration, C. Adloff et al., Forward jet and particle production at HERA. Nucl. Phys. B 538, 3–22 (1999). https://doi.org/10.1016/S0550-3213(98)00745-7. arXiv:hep-ex/9809028
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-009-1208-7$$uH1 Collaboration, F. D. Aaron et al., Jet production in ep collisions at high Q**2 and determination of alpha(s). Eur. Phys. J. C 65, 363–383 (2010). https://doi.org/10.1140/epjc/s10052-009-1208-7. arXiv:0904.3870
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2007.07.050$$uH1 Collaboration, A. Aktas et al., Measurement of inclusive jet production in deep-inelastic scattering at high Q**2 and determination of the strong coupling. Phys. Lett. B 653, 134–144 (2007). https://doi.org/10.1016/j.physletb.2007.07.050. arXiv:0706.3722
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-010-1282-x$$uH1 Collaboration, F. D. Aaron et al., Jet production in ep collisions at low $$Q^{2}$$ and determination of alpha(s). Eur. Phys. J. C 67, 1–24 (2010). https://doi.org/10.1140/epjc/s10052-010-1282-x. arXiv:0911.5678
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)00095-3$$uH1 Collaboration, T. Ahmed et al., Determination of the strong coupling constant from jet rates in deep inelastic scattering. Phys. Lett. B 346, 415–425 (1995). https://doi.org/10.1016/0370-2693(95)00095-3
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(02)02375-4$$uH1 Collaboration, C. Adloff et al., Measurement of inclusive jet cross-sections in deep inelastic ep scattering at HERA. Phys. Lett. B 542, 193–206 (2002). https://doi.org/10.1016/S0370-2693(02)02375-4. arXiv:hep-ex/0206029
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2005-02293-x$$uZEUS Collaboration, S. Chekanov et al., An NLO QCD analysis of inclusive cross-section and jet-production data from the zeus experiment. Eur. Phys. J. C 42, 1–16 (2005). https://doi.org/10.1140/epjc/s2005-02293-x. arXiv:hep-ph/0503274
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(02)02763-6$$uZEUS Collaboration, S. Chekanov et al., Inclusive jet cross-sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s). Phys. Lett. B 547, 164–180 (2002). https://doi.org/10.1016/S0370-2693(02)02763-6. arXiv:hep-ex/0208037
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(94)90883-4$$uZEUS Collaboration, M. Derrick et al., Observation of jet production in deep inelastic scattering with a large rapidity gap at HERA. Phys. Lett. B 332, 228–243 (1994). https://doi.org/10.1016/0370-2693(94)90883-4
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(95)01284-W$$uZEUS Collaboration, M. Derrick et al., Measurement of alpha-s from jet rates in deep inelastic scattering at HERA. Phys. Lett. B 363, 201–216 (1995). https://doi.org/10.1016/0370-2693(95)01284-W. arXiv:hep-ex/9510001
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2006.09.018$$uZEUS Collaboration, S. Chekanov et al., Inclusive-jet and dijet cross-sections in deep inelastic scattering at HERA. Nucl. Phys. B 765, 1–30 (2007). https://doi.org/10.1016/j.nuclphysb.2006.09.018. arXiv:hep-ex/0608048
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-014-3223-6$$uH1 Collaboration, V. Andreev et al., Measurement of multijet production in $$ep$$ collisions at high $$Q^2$$ and determination of the strong coupling $$\alpha _s$$. Eur. Phys. J. C 75, 65 (2015). https://doi.org/10.1140/epjc/s10052-014-3223-6. arXiv:1406.4709
000604606 999C5 $$2Crossref$$uZEUS Collaboration, Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS. arXiv:2309.02889
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.103.054005$$uY. Makris, Revisiting the role of grooming in DIS. Phys. Rev. D 103, 054005 (2021). https://doi.org/10.1103/PhysRevD.103.054005. arXiv:2101.02708
000604606 999C5 $$1S Marzani$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2017)132$$p132 -$$tJHEP$$uS. Marzani, L. Schunk, G. Soyez, A study of jet mass distributions with grooming. JHEP 07, 132 (2017). https://doi.org/10.1007/JHEP07(2017)132. arXiv:1704.02210$$v07$$y2017
000604606 999C5 $$1AJ Larkoski$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.014012$$p014012 -$$tPhys. Rev. D$$uA.J. Larkoski, I. Moult, Nonglobal correlations in collider physics. Phys. Rev. D 93, 014012 (2016). https://doi.org/10.1103/PhysRevD.93.014012. arXiv:1510.05657$$v93$$y2016
000604606 999C5 $$1RA Khalek$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysa.2022.122447$$p122447 -$$tNucl. Phys. A$$uR.A. Khalek et al., Science requirements and detector concepts for the electron-ion collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447. arXiv:2103.05419$$v1026$$y2022
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)00893-5$$uH1 Collaboration, I. Abt et al., The H1 detector at HERA. Nucl. Instrum. Methods A386, 310–347 (1997). https://doi.org/10.1016/S0168-9002(96)00893-5
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(93)91257-N$$uH1 Calorimeter Group Collaboration, B. Andrieu et al., The H1 liquid argon calorimeter system. Nucl. Instrum. Methods A 336, 460–498 (1993). https://doi.org/10.1016/0168-9002(93)91257-N
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)00894-7$$uH1 Collaboration, I. Abt et al., The Tracking, calorimeter and muon detectors of the H1 experiment at HERA. Nucl. Instrum. Methods A 386, 348–396 (1997). https://doi.org/10.1016/S0168-9002(96)00894-7
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)01171-0$$uH1 SPACAL Group Collaboration, R.D. Appuhn et al., The H1 lead/scintillating-fibre calorimeter. Nucl. Instrum. Methods A 386, 397–408 (1997). https://doi.org/10.1016/S0168-9002(96)01171-0
000604606 999C5 $$1D Pitzl$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(00)00488-5$$p334 -$$tNucl. Instrum. Methods A$$uD. Pitzl et al., The H1 silicon vertex detector. Nucl. Instrum. Methods A 454, 334–349 (2000). https://doi.org/10.1016/S0168-9002(00)00488-5. arXiv:hep-ex/0002044$$v454$$y2000
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)00893-5$$uH1 Collaboration, I. Abt et al., The H1 detector at HERA. Nucl. Instrum. Methods A 386, 310–347 (1997). https://doi.org/10.1016/S0168-9002(96)00893-5
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)00894-7$$uH1 Collaboration, I. Abt et al., The Tracking, calorimeter and muon detectors of the H1 experiment at HERA. Nucl. Instrum. Methods A 386, 348–396 (1997). https://doi.org/10.1016/S0168-9002(96)00894-7
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-9002(96)01171-0$$uH1 SPACAL Group Collaboration, R.D. Appuhn et al., The H1 lead/scintillating-fibre calorimeter. Nucl. Instrum. Methods A 386, 397–408 (1997). https://doi.org/10.1016/S0168-9002(96)01171-0
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(93)91258-O$$uH1 Calorimeter Group Collaboration, B. Andrieu et al., Results from pion calibration runs for the H1 liquid argon calorimeter and comparisons with simulations. Nucl. Instrum. Methods A 336, 499–509 (1993). https://doi.org/10.1016/0168-9002(93)91258-O
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(94)91155-X$$uH1 Calorimeter Group Collaboration, B. Andrieu et al., Beam tests and calibration of the H1 liquid argon calorimeter with electrons. Nucl. Instrum. Methods A 350, 57–72 (1994). https://doi.org/10.1016/0168-9002(94)91155-X
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(95)01443-8$$uH1 SPACAL Group Collaboration, T. Nicholls et al., Performance of an electromagnetic lead / scintillating fiber calorimeter for the H1 detector. Nucl. Instrum. Methods A 374, 149–156 (1996). https://doi.org/10.1016/0168-9002(95)01443-8
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3204/DESY-THESIS-2003-023$$uM. Peez, Search for deviations from the standard model in high transverse energy processes at the electron proton collider HERA. PhD thesis (2003). https://doi.org/10.3204/DESY-THESIS-2003-023
000604606 999C5 $$2Crossref$$uS. Hellwig, Untersuchung der $$D^* - \pi _{slow}$$ Double Tagging Methods in Charmanalysen, Diploma thesis, Hamburg U. (2004). http://www-h1.desy.de/psfiles/theses/
000604606 999C5 $$2Crossref$$uB. Portheault, Premiere mesure des sections efficaces de courant charge et neutre avec le faisceau de positrons polarise a HERA II et analyses QCD-electrofaibles. PhD thesis (2005). http://www-h1.desy.de/psfiles/theses/
000604606 999C5 $$1U Bassler$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-9002(95)00173-5$$p197 -$$tNucl. Instrum. Methods A$$uU. Bassler, G. Bernardi, On the kinematic reconstruction of deep inelastic scattering at HERA: the Sigma method. Nucl. Instrum. Methods A 361, 197–208 (1995). https://doi.org/10.1016/0168-9002(95)00173-5. arXiv:hep-ex/9412004$$v361$$y1995
000604606 999C5 $$1K Charchula$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(94)90086-8$$p381 -$$tComput. Phys. Commun.$$uK. Charchula, G.A. Schuler, H. Spiesberger, Combined QED and QCD radiative effects in deep inelastic lepton-proton scattering: the Monte Carlo generator DJANGO6. Comput. Phys. Commun. 81, 381–402 (1994). https://doi.org/10.1016/0010-4655(94)90086-8$$v81$$y1994
000604606 999C5 $$1A Kwiatkowski$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(92)90136-M$$p155 -$$tComput. Phys. Commun.$$uA. Kwiatkowski, H. Spiesberger, H.J. Möhring, Heracles: an event generator for $$e p$$ interactions at HERA energies including radiative processes: version 1.0. Comput. Phys. Commun. 69, 155–172 (1992). https://doi.org/10.1016/0010-4655(92)90136-M$$v69$$y1992
000604606 999C5 $$2Crossref$$uG.A. Schuler, H. Spiesberger, DJANGO: The Interface for the event generators HERACLES and LEPTO, in Workshop on Physics at HERA (1991)
000604606 999C5 $$1L Lönnblad$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(92)90068-A$$p15 -$$tComput. Phys. Commun.$$uL. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model. Comput. Phys. Commun. 71, 15–31 (1992). https://doi.org/10.1016/0010-4655(92)90068-A$$v71$$y1992
000604606 999C5 $$1J Pumplin$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2002/07/012$$p012 -$$tJHEP$$uJ. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195$$v07$$y2002
000604606 999C5 $$1B Andersson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-1573(83)90080-7$$p31 -$$tPhys. Rep.$$uB. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97, 31–145 (1983). https://doi.org/10.1016/0370-1573(83)90080-7$$v97$$y1983
000604606 999C5 $$2Crossref$$uT. Sjöstrand, PYTHIA 5.7 and JETSET 7.4: Physics and manual. arXiv:hep-ph/9508391
000604606 999C5 $$1H Jung$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(94)00150-Z$$p147 -$$tComput. Phys. Commun.$$uH. Jung, Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP. Comput. Phys. Commun. 86, 147–161 (1995). https://doi.org/10.1016/0010-4655(94)00150-Z$$v86$$y1995
000604606 999C5 $$2Crossref$$uT. Sjöstrand, L. Lönnblad, S. Mrenna, PYTHIA 6.2: Physics and manual. arXiv:hep-ph/0108264
000604606 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2015.01.024$$p159 -$$tComput. Phys. Commun.$$uT. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024. arXiv:1410.3012$$v191$$y2015
000604606 999C5 $$2Crossref$$uThe Pythia authors, Pythia 8.3 documentation (2021). https://pythia.org
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3684-2$$p461 -$$tEur. Phys. J. C$$uS. Höche, S. Prestel, The midpoint between dipole and parton showers. Eur. Phys. J. C 75, 461 (2015). https://doi.org/10.1140/epjc/s10052-015-3684-2. arXiv:1506.05057$$v75$$y2015
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3684-2$$p074017 -$$tPhys. Rev. D$$uS. Höche, S. Prestel, Triple collinear emissions in parton showers. Phys. Rev. D 96, 074017 (2017). https://doi.org/10.1140/epjc/s10052-015-3684-2. arXiv:1705.00742$$v96$$y2017
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP10(2017)093$$p093 -$$tJHEP$$uS. Höche, F. Krauss, S. Prestel, Implementing NLO DGLAP evolution in parton showers. JHEP 10, 093 (2017). https://doi.org/10.1007/JHEP10(2017)093. arXiv:1705.00982$$v10$$y2017
000604606 999C5 $$1LA Harland-Lang$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-015-3397-6$$p204 -$$tEur. Phys. J. C$$uL.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). https://doi.org/10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989$$v75$$y2015
000604606 999C5 $$2Crossref$$uA. Banfi, S.F. Ravasio, B. Jäger, A. Karlberg, F. Reichenbach, G. Zanderighi, A POWHEG generator for deep inelastic scattering. arXiv:2309.02127
000604606 999C5 $$1P Nason$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2004/11/040$$p040 -$$tJHEP$$uP. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146$$v11$$y2004
000604606 999C5 $$1S Frixione$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2007/11/070$$p070 -$$tJHEP$$uS. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070. arXiv:0709.2092$$v11$$y2007
000604606 999C5 $$1S Frixione$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(96)00110-1$$p399 -$$tNucl. Phys. B$$uS. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-to-leading order. Nucl. Phys. B 467, 399–442 (1996). https://doi.org/10.1016/0550-3213(96)00110-1. arXiv:hep-ph/9512328$$v467$$y1996
000604606 999C5 $$1J Bellm$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-016-4018-8$$p196 -$$tEur. Phys. J. C$$uJ. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 76, 196 (2016). https://doi.org/10.1140/epjc/s10052-016-4018-8. arXiv:1512.01178$$v76$$y2016
000604606 999C5 $$1S Gieseke$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2003/12/045$$p045 -$$tJHEP$$uS. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. JHEP 12, 045 (2003). https://doi.org/10.1088/1126-6708/2003/12/045. arXiv:hep-ph/0310083$$v12$$y2003
000604606 999C5 $$1BR Webber$$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(84)90333-X$$p492 -$$tNucl. Phys. B$$uB.R. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492–528 (1984). https://doi.org/10.1016/0550-3213(84)90333-X$$v238$$y1984
000604606 999C5 $$1G Marchesini$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(92)90055-4$$p465 -$$tComput. Phys. Commun.$$uG. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles, M.H. Seymour, L. Stanco, HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 - April 1991. Comput. Phys. Commun. 67, 465–508 (1992). https://doi.org/10.1016/0010-4655(92)90055-4$$v67$$y1992
000604606 999C5 $$1S Platzer$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-012-2187-7$$p2187 -$$tEur. Phys. J. C$$uS. Platzer, S. Gieseke, Dipole showers and automated NLO matching in Herwig++. Eur. Phys. J. C 72, 2187 (2012). https://doi.org/10.1140/epjc/s10052-012-2187-7. arXiv:1109.6256$$v72$$y2012
000604606 999C5 $$1C Bierlich$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.8.2.026$$p026 -$$tSciPost Phys.$$uC. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3. SciPost Phys. 8, 026 (2020). https://doi.org/10.21468/SciPostPhys.8.2.026. arXiv:1912.05451$$v8$$y2020
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.7.3.034$$uSherpa Collaboration, E. Bothmann et al., Event generation with Sherpa 2.2. SciPost Phys. 7, 034 (2019). https://doi.org/10.21468/SciPostPhys.7.3.034. arXiv:1905.09127
000604606 999C5 $$1T Gleisberg$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/02/007$$p007 -$$tJHEP$$uT. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP 02, 007 (2009). https://doi.org/10.1088/1126-6708/2009/02/007. arXiv:0811.4622$$v02$$y2009
000604606 999C5 $$1C Duhr$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/08/062$$p062 -$$tJHEP$$uC. Duhr, S. Höche, F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes. JHEP 08, 062 (2006). https://doi.org/10.1088/1126-6708/2006/08/062. arXiv:hep-ph/0607057$$v08$$y2006
000604606 999C5 $$1S Catani$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2001/11/063$$p063 -$$tJHEP$$uS. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. JHEP 11, 063 (2001). https://doi.org/10.1088/1126-6708/2001/11/063. arXiv:hep-ph/0109231$$v11$$y2001
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0550-3213(96)00589-5$$uS. Catani, M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997) . https://doi.org/10.1016/S0550-3213(96)00589-5. arXiv:hep-ph/9605323. [Erratum: Nucl. Phys. B 510, 503–504 (1998)]
000604606 999C5 $$1S Schumann$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2008/03/038$$p038 -$$tJHEP$$uS. Schumann, F. Krauss, A parton shower algorithm based on Catani–Seymour dipole factorisation. JHEP 03, 038 (2008). https://doi.org/10.1088/1126-6708/2008/03/038. arXiv:0709.1027$$v03$$y2008
000604606 999C5 $$1J-C Winter$$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s2004-01960-8$$p381 -$$tEur. Phys. J. C$$uJ.-C. Winter, F. Krauss, G. Soff, A modified cluster hadronization model. Eur. Phys. J. C 36, 381–395 (2004). https://doi.org/10.1140/epjc/s2004-01960-8. arXiv:hep-ph/0311085$$v36$$y2004
000604606 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2006/05/026$$p026 -$$tJHEP$$uT. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175$$v05$$y2006
000604606 999C5 $$1H-L Lai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.82.074024$$tPhys. Rev. D$$uH.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.P. Yuan, New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). https://doi.org/10.1103/PhysRevD.82.074024. arXiv:1007.2241$$v82$$y2010
000604606 999C5 $$1GS Chahal$$2Crossref$$9-- missing cx lookup --$$a10.21468/SciPostPhys.13.2.019$$p019 -$$tSciPost Phys.$$uG.S. Chahal, F. Krauss, Cluster hadronisation in Sherpa. SciPost Phys. 13, 019 (2022). https://doi.org/10.21468/SciPostPhys.13.2.019. arXiv:2203.11385$$v13$$y2022
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-7306-2$$uOpenLoops 2 Collaboration, F. Buccioni, J.-N. Lang, J.M. Lindert, P. Maierhöfer, S. Pozzorini, H. Zhang, M.F. Zoller, OpenLoops 2. Eur. Phys. J. C 79, 866 (2019). https://doi.org/10.1140/epjc/s10052-019-7306-2. arXiv:1907.13071
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/05/053$$p053 -$$tJHEP$$uS. Höche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements and truncated showers. JHEP 05, 053 (2009). https://doi.org/10.1088/1126-6708/2009/05/053. arXiv:0903.1219$$v05$$y2009
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2013)027$$p027 -$$tJHEP$$uS. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 04, 027 (2013). https://doi.org/10.1007/JHEP04(2013)027. arXiv:1207.5030$$v04$$y2013
000604606 999C5 $$1A Banfi$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2005/03/073$$p073 -$$tJHEP$$uA. Banfi, G.P. Salam, G. Zanderighi, Principles of general final-state resummation and automated implementation. JHEP 03, 073 (2005). https://doi.org/10.1088/1126-6708/2005/03/073. arXiv:hep-ph/0407286$$v03$$y2005
000604606 999C5 $$1E Gerwick$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP02(2015)106$$p106 -$$tJHEP$$uE. Gerwick, S. Höche, S. Marzani, S. Schumann, Soft evolution of multi-jet final states. JHEP 02, 106 (2015). https://doi.org/10.1007/JHEP02(2015)106. arXiv:1411.7325$$v02$$y2015
000604606 999C5 $$1N Baberuxki$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP04(2020)112$$p112 -$$tJHEP$$uN. Baberuxki, C.T. Preuss, D. Reichelt, S. Schumann, Resummed predictions for jet-resolution scales in multijet production in e$$^{+}$$e$$^{-}$$ annihilation. JHEP 04, 112 (2020). https://doi.org/10.1007/JHEP04(2020)112. arXiv:1912.09396$$v04$$y2020
000604606 999C5 $$1J Baron$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP07(2021)142$$p142 -$$tJHEP$$uJ. Baron, D. Reichelt, S. Schumann, N. Schwanemann, V. Theeuwes, Soft-drop grooming for hadronic event shapes. JHEP 07, 142 (2021). https://doi.org/10.1007/JHEP07(2021)142. arXiv:2012.09574$$v07$$y2021
000604606 999C5 $$1S Höche$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.114013$$p114013 -$$tPhys. Rev. D$$uS. Höche, S. Kuttimalai, Y. Li, Hadronic final states in DIS at NNLO QCD with parton showers. Phys. Rev. D 98, 114013 (2018). https://doi.org/10.1103/PhysRevD.98.114013. arXiv:1809.04192$$v98$$y2018
000604606 999C5 $$1D Reichelt$$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP03(2022)131$$p131 -$$tJHEP$$uD. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann, G. Soyez, Phenomenology of jet angularities at the LHC. JHEP 03, 131 (2022). https://doi.org/10.1007/JHEP03(2022)131. arXiv:2112.09545$$v03$$y2022
000604606 999C5 $$1KH Streng$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01474667$$p237 -$$tZ. Phys. C$$uK.H. Streng, T.F. Walsh, P.M. Zerwas, Quark and gluon jets in the Breit frame of lepton-nucleon scattering. Z. Phys. C 2, 237 (1979). https://doi.org/10.1007/BF01474667$$v2$$y1979
000604606 999C5 $$1G Thompson$$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/19/10/013$$p1575 -$$tJ. Phys. G$$uG. Thompson, N.A. McCubbin, J.V. Morris, D.P.C. Sankey, Jet finding in the Breit frame. J. Phys. G 19, 1575–1582 (1993). https://doi.org/10.1088/0954-3899/19/10/013$$v19$$y1993
000604606 999C5 $$1M Arratia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.104.034005$$p034005 -$$tPhys. Rev. D$$uM. Arratia, Y. Makris, D. Neill, F. Ringer, N. Sato, Asymmetric jet clustering in deep-inelastic scattering. Phys. Rev. D 104, 034005 (2021). https://doi.org/10.1103/PhysRevD.104.034005. arXiv:2006.10751$$v104$$y2021
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17181/CERN.MUHF.DMJ1$$uR. Brun et al., GEANT: Detector Description and Simulation Tool; Oct 1994. CERN Program Library. Long Writeup W5013. CERN, Geneva (1993). https://doi.org/10.17181/CERN.MUHF.DMJ1. http://cds.cern.ch/record/1082634
000604606 999C5 $$1D Kang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.88.054004$$p054004 -$$tPhys. Rev. D$$uD. Kang, C. Lee, I.W. Stewart, Using 1-jettiness to measure 2 jets in DIS 3 ways. Phys. Rev. D 88, 054004 (2013). https://doi.org/10.1103/PhysRevD.88.054004. arXiv:1303.6952$$v88$$y2013
000604606 999C5 $$1M Dasgupta$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/1998/10/001$$p001 -$$tJHEP$$uM. Dasgupta, B.R. Webber, Two loop enhancement factor for 1/Q corrections to event shapes in deep inelastic scattering. JHEP 10, 001 (1998). https://doi.org/10.1088/1126-6708/1998/10/001. arXiv:hep-ph/9809247$$v10$$y1998
000604606 999C5 $$1YL Dokshitzer$$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/1998/05/003$$p003 -$$tJHEP$$uY.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, On the universality of the Milan factor for 1/Q power corrections to jet shapes. JHEP 05, 003 (1998). https://doi.org/10.1088/1126-6708/1998/05/003. arXiv:hep-ph/9802381$$v05$$y1998
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/7/10/T10003$$uS. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics. JINST 7, T10003 (2012). https://doi.org/10.1088/1748-0221/7/10/T10003. arXiv:1205.6201
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.43288$$uM. Kuhlen, The Fast H1 detector Monte Carlo, in 26th International Conference on High-energy Physics, pp. 1787–1790 (1992). https://doi.org/10.1063/1.43288
000604606 999C5 $$1A Glazov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2010.02.004$$p1008 -$$tComput. Phys. Commun.$$uA. Glazov, N. Raicevic, A. Zhokin, Fast simulation of showers in the H1 calorimeter. Comput. Phys. Commun. 181, 1008–1012 (2010). https://doi.org/10.1016/j.cpc.2010.02.004$$v181$$y2010
000604606 999C5 $$1T Sjöstrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(94)90132-5$$p74 -$$tComput. Phys. Commun.$$uT. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74–90 (1994). https://doi.org/10.1016/0010-4655(94)90132-5$$v82$$y1994
000604606 999C5 $$1A Courau$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.46.117$$p117 -$$tPhys. Rev. D$$uA. Courau, P. Kessler, QED Compton scattering in high-energy electron-proton collisions. Phys. Rev. D 46, 117–124 (1992). https://doi.org/10.1103/PhysRevD.46.117$$v46$$y1992
000604606 999C5 $$1T Abe$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(00)00246-0$$p126 -$$tComput. Phys. Commun.$$uT. Abe, GRAPE dilepton (Version1.1): a generator for dilepton production in e p collisions. Comput. Phys. Commun. 136, 126–147 (2001). https://doi.org/10.1016/S0010-4655(00)00246-0. arXiv:hep-ph/0012029$$v136$$y2001
000604606 999C5 $$2Crossref$$uE. Perez, L. Schoeffel, L. Favart, MILOU: A Monte-Carlo for deeply virtual Compton scattering. arXiv:hep-ph/0411389
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP09(2012)061$$uH1 Collaboration, F.D. Aaron et al., Inclusive deep inelastic scattering at high $$Q^2$$ with longitudinally polarised lepton beams at HERA. JHEP 09, 061 (2012). https://doi.org/10.1007/JHEP09(2012)061. arXiv:1206.7007
000604606 999C5 $$2Crossref$$uR. Kogler, Measurement of jet production in deep-inelastic e p scattering at HERA. Phd thesis, University of Hamburg (2011). DESY-THESIS-2011-003, MPP-2010-175
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-012-2163-2$$uH1 Collaboration, F.D. Aaron et al., Determination of the integrated luminosity at HERA using elastic QED compton events. Eur. Phys. J. C 72, 2163 (2012). https://doi.org/10.1140/epjc/s10052-012-2163-2. arXiv:1205.2448. [Erratum: Eur. Phys. J. C 74, 2733 (2012)]
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0954-3899/39/7/075001$$uLHeC Study Group Collaboration, J.L. Abelleira Fernandez et al., A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector. J. Phys. G 39, 075001 (2012). https://doi.org/10.1088/0954-3899/39/7/075001. arXiv:1206.2913
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6471/abf3ba$$uLHeC, FCC-he Study Group Collaboration, P. Agostini et al., The large hadron–electron collider at the HL-LHC. J. Phys. G 48, 110501 (2021). https://doi.org/10.1088/1361-6471/abf3ba. arXiv:2007.14491
000604606 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjc/s10052-019-6904-3$$uFCC Collaboration, A. Abada et al., FCC Physics opportunities: future circular collider conceptual design report volume 1. Eur. Phys. J. C 79, 474 (2019). https://doi.org/10.1140/epjc/s10052-019-6904-3