% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Hoeing:604542,
author = {Hoeing, Dominik and Salzwedel, Robert and Worbs, Lena and
Zhuang, Yulong and Samanta, Amit K. and Lübke, Jannik and
Estillore, Armando D. and Dlugolecki, Karol and Passow,
Christopher and Erk, Benjamin and Ekanayake, Nagitha and
Ramm, Daniel and Correa, Jonathan and Papadopoulou,
Christina C. and Noor, Atia Tul and Schulz, Florian and
Selig, Malte and Knorr, Andreas and Ayyer, Kartik and
Küpper, Jochen and Lange, Holger},
title = {{T}ime-{R}esolved {S}ingle-{P}article {X}-ray {S}cattering
{R}eveals {E}lectron-{D}ensity {G}radients {A}s {C}oherent
{P}lasmonic-{N}anoparticle-{O}scillation {S}ource},
reportid = {PUBDB-2024-01158, arXiv:2303.04513},
year = {2023},
note = {32 pages, 5 figures, 1 supporting information document
includedbitte mit dem JA
https://bib-pubdb1.desy.de/record/481433 verknüpfen.},
abstract = {Dynamics of optically-excited plasmonic nanoparticles are
presently understood as a series of sequential scattering
events, involving thermalization processes after pulsed
optical excitation. One important step is the initiation of
nanoparticle breathing oscillations. According to
established experiments and models, these are caused by the
statistical heat transfer from thermalized electrons to the
lattice. An additional contribution by hot electron pressure
has to be included to account for phase mismatches that
arise from the lack of experimental data on the breathing
onset. We used optical transient-absorption spectroscopy and
time-resolved single-particle x-ray-diffractive imaging to
access the excited electron system and lattice. The
time-resolved single-particle imaging data provided
structural information directly on the onset of the
breathing oscillation and confirmed the need for an
additional excitation mechanism to thermal expansion, while
the observed phase-dependence of the combined structural and
optical data contrasted previous studies. Therefore, we
developed a new model that reproduces all our experimental
observations without using fit parameters. We identified
optically-induced electron density gradients as the main
driving source.},
cin = {FS-CFEL-CMI / MPSD / UNI/CUI / UNI/EXP / FS-FLASH-O /
FS-FLASH-D / FS-LA / FS-DS},
ddc = {660},
cid = {I:(DE-H253)FS-CFEL-CMI-20220405 / I:(DE-H253)MPSD-20120731
/ $I:(DE-H253)UNI_CUI-20121230$ /
$I:(DE-H253)UNI_EXP-20120731$ /
I:(DE-H253)FS-FLASH-O-20160930 /
I:(DE-H253)FS-FLASH-D-20160930 / I:(DE-H253)FS-LA-20130416 /
I:(DE-H253)FS-DS-20120731},
pnm = {631 - Matter – Dynamics, Mechanisms and Control
(POF4-631) / 6G2 - FLASH (DESY) (POF4-6G2) / COMOTION -
Controlling the Motion of Complex Molecules and Particles
(614507) / DFG project 390715994 - EXC 2056: CUI: Advanced
Imaging of Matter (390715994) / DFG project 194651731 - EXC
1074: Hamburger Zentrum für ultraschnelle Beobachtung
(CUI): Struktur, Dynamik und Kontrolle von Materie auf
atomarer Skala (194651731) / DFG project 432266622 -
Plasmonkontrolle mit THz Pulsen (432266622) / FS-Proposal:
F-20190741 (F-20190741)},
pid = {G:(DE-HGF)POF4-631 / G:(DE-HGF)POF4-6G2 /
G:(EU-Grant)614507 / G:(GEPRIS)390715994 /
G:(GEPRIS)194651731 / G:(GEPRIS)432266622 /
G:(DE-H253)F-20190741},
experiment = {EXP:(DE-H253)F-BL1-20150101},
typ = {PUB:(DE-HGF)25},
eprint = {2303.04513},
howpublished = {arXiv:2303.04513},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:2303.04513;\%\%$},
pubmed = {pmid:37350548},
url = {https://bib-pubdb1.desy.de/record/604542},
}