% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Hoeing:604542,
      author       = {Hoeing, Dominik and Salzwedel, Robert and Worbs, Lena and
                      Zhuang, Yulong and Samanta, Amit K. and Lübke, Jannik and
                      Estillore, Armando D. and Dlugolecki, Karol and Passow,
                      Christopher and Erk, Benjamin and Ekanayake, Nagitha and
                      Ramm, Daniel and Correa, Jonathan and Papadopoulou,
                      Christina C. and Noor, Atia Tul and Schulz, Florian and
                      Selig, Malte and Knorr, Andreas and Ayyer, Kartik and
                      Küpper, Jochen and Lange, Holger},
      title        = {{T}ime-{R}esolved {S}ingle-{P}article {X}-ray {S}cattering
                      {R}eveals {E}lectron-{D}ensity {G}radients {A}s {C}oherent
                      {P}lasmonic-{N}anoparticle-{O}scillation {S}ource},
      reportid     = {PUBDB-2024-01158, arXiv:2303.04513},
      year         = {2023},
      note         = {32 pages, 5 figures, 1 supporting information document
                      includedbitte mit dem JA
                      https://bib-pubdb1.desy.de/record/481433 verknüpfen.},
      abstract     = {Dynamics of optically-excited plasmonic nanoparticles are
                      presently understood as a series of sequential scattering
                      events, involving thermalization processes after pulsed
                      optical excitation. One important step is the initiation of
                      nanoparticle breathing oscillations. According to
                      established experiments and models, these are caused by the
                      statistical heat transfer from thermalized electrons to the
                      lattice. An additional contribution by hot electron pressure
                      has to be included to account for phase mismatches that
                      arise from the lack of experimental data on the breathing
                      onset. We used optical transient-absorption spectroscopy and
                      time-resolved single-particle x-ray-diffractive imaging to
                      access the excited electron system and lattice. The
                      time-resolved single-particle imaging data provided
                      structural information directly on the onset of the
                      breathing oscillation and confirmed the need for an
                      additional excitation mechanism to thermal expansion, while
                      the observed phase-dependence of the combined structural and
                      optical data contrasted previous studies. Therefore, we
                      developed a new model that reproduces all our experimental
                      observations without using fit parameters. We identified
                      optically-induced electron density gradients as the main
                      driving source.},
      cin          = {FS-CFEL-CMI / MPSD / UNI/CUI / UNI/EXP / FS-FLASH-O /
                      FS-FLASH-D / FS-LA / FS-DS},
      ddc          = {660},
      cid          = {I:(DE-H253)FS-CFEL-CMI-20220405 / I:(DE-H253)MPSD-20120731
                      / $I:(DE-H253)UNI_CUI-20121230$ /
                      $I:(DE-H253)UNI_EXP-20120731$ /
                      I:(DE-H253)FS-FLASH-O-20160930 /
                      I:(DE-H253)FS-FLASH-D-20160930 / I:(DE-H253)FS-LA-20130416 /
                      I:(DE-H253)FS-DS-20120731},
      pnm          = {631 - Matter – Dynamics, Mechanisms and Control
                      (POF4-631) / 6G2 - FLASH (DESY) (POF4-6G2) / COMOTION -
                      Controlling the Motion of Complex Molecules and Particles
                      (614507) / DFG project 390715994 - EXC 2056: CUI: Advanced
                      Imaging of Matter (390715994) / DFG project 194651731 - EXC
                      1074: Hamburger Zentrum für ultraschnelle Beobachtung
                      (CUI): Struktur, Dynamik und Kontrolle von Materie auf
                      atomarer Skala (194651731) / DFG project 432266622 -
                      Plasmonkontrolle mit THz Pulsen (432266622) / FS-Proposal:
                      F-20190741 (F-20190741)},
      pid          = {G:(DE-HGF)POF4-631 / G:(DE-HGF)POF4-6G2 /
                      G:(EU-Grant)614507 / G:(GEPRIS)390715994 /
                      G:(GEPRIS)194651731 / G:(GEPRIS)432266622 /
                      G:(DE-H253)F-20190741},
      experiment   = {EXP:(DE-H253)F-BL1-20150101},
      typ          = {PUB:(DE-HGF)25},
      eprint       = {2303.04513},
      howpublished = {arXiv:2303.04513},
      archivePrefix = {arXiv},
      SLACcitation = {$\%\%CITATION$ = $arXiv:2303.04513;\%\%$},
      pubmed       = {pmid:37350548},
      url          = {https://bib-pubdb1.desy.de/record/604542},
}