000604244 001__ 604244
000604244 005__ 20250930122234.0
000604244 0247_ $$2doi$$a10.1093/nar/gkv481
000604244 0247_ $$2ISSN$$a0305-1048
000604244 0247_ $$2ISSN$$a0261-3166
000604244 0247_ $$2ISSN$$a1362-4954
000604244 0247_ $$2ISSN$$a1362-4962
000604244 0247_ $$2ISSN$$a1746-8272
000604244 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01042
000604244 0247_ $$2altmetric$$aaltmetric:3977705
000604244 0247_ $$2pmid$$apmid:25953853
000604244 0247_ $$2openalex$$aopenalex:W1617208156
000604244 037__ $$aPUBDB-2024-01042
000604244 041__ $$aEnglish
000604244 082__ $$a540
000604244 1001_ $$0P:(DE-H253)PIP1017112$$aReinhard, L.$$b0
000604244 245__ $$aStructure of the nuclease subunit of human mitochondrial RNase P
000604244 260__ $$aOxford$$bOxford Univ. Press$$c2015
000604244 3367_ $$2DRIVER$$aarticle
000604244 3367_ $$2DataCite$$aOutput Types/Journal article
000604244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751894758_3759128
000604244 3367_ $$2BibTeX$$aARTICLE
000604244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604244 3367_ $$00$$2EndNote$$aJournal Article
000604244 500__ $$aISSN 1362-4962 not unique: **2 hits**.
000604244 520__ $$aMitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5′ ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1–3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)—albeit homologous to MRPP3—are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.
000604244 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000604244 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000604244 693__ $$0EXP:(DE-H253)P-P14-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P14-20150101$$aPETRA III$$fPETRA Beamline P14$$x0
000604244 7001_ $$0P:(DE-H253)PIP1020963$$aSridhara, S.$$b1
000604244 7001_ $$0P:(DE-HGF)0$$aHallberg, B. M$$b2$$eCorresponding author
000604244 773__ $$0PERI:(DE-600)2205588-5$$a10.1093/nar/gkv481$$gVol. 43, no. 11, p. 5664 - 5672$$n11$$p5664 - 5672$$tNucleic acids symposium series$$v43$$x0305-1048$$y2015
000604244 8564_ $$uhttps://bib-pubdb1.desy.de/record/604244/files/gkv481.pdf$$yOpenAccess
000604244 8564_ $$uhttps://bib-pubdb1.desy.de/record/604244/files/gkv481.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000604244 909CO $$ooai:bib-pubdb1.desy.de:604244$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000604244 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017112$$aExternal Institute$$b0$$kExtern
000604244 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1020963$$aEuropean Molecular Biology Laboratory$$b1$$kEMBL
000604244 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020963$$aExternal Institute$$b1$$kExtern
000604244 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000604244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-25
000604244 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000604244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCLEIC ACIDS RES : 2022$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNUCLEIC ACIDS RES : 2022$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-02-17T18:55:29Z
000604244 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-02-17T18:55:29Z
000604244 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000604244 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-02-17T18:55:29Z
000604244 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-25
000604244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000604244 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000604244 980__ $$ajournal
000604244 980__ $$aVDB
000604244 980__ $$aUNRESTRICTED
000604244 980__ $$aI:(DE-H253)EMBL-User-20120814
000604244 9801_ $$aFullTexts