Home > Publications database > Ionization by XFEL radiation produces distinct structure in liquid water > print |
001 | 604238 | ||
005 | 20250715171340.0 | ||
024 | 7 | _ | |a 10.1038/s42005-024-01768-6 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-01036 |2 datacite_doi |
024 | 7 | _ | |a altmetric:166515355 |2 altmetric |
024 | 7 | _ | |a WOS:001295013200001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4401975880 |
037 | _ | _ | |a PUBDB-2024-01036 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Stransky, Michal |0 P:(DE-H253)PIP1092209 |b 0 |
245 | _ | _ | |a Ionization by XFEL radiation produces distinct structure in liquid water |
260 | _ | _ | |a London |c 2024 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725528007_2836047 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm$^2$), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O$^{1+}$ and O$^{2+}$ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 1 |
542 | _ | _ | |i 2024-08-20 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-08-20 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to DataCite |
693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
700 | 1 | _ | |a Lane, Thomas |0 P:(DE-H253)PIP1020283 |b 1 |e Corresponding author |
700 | 1 | _ | |a Gorel, Alexander |0 P:(DE-H253)PIP1082165 |b 2 |
700 | 1 | _ | |a Boutet, Sebastien |0 P:(DE-H253)PIP1009086 |b 3 |
700 | 1 | _ | |a Schlichting, Ilme |0 P:(DE-H253)PIP1008260 |b 4 |e Corresponding author |
700 | 1 | _ | |a Mancuso, Adrian |0 P:(DE-H253)PIP1006340 |b 5 |
700 | 1 | _ | |a Jurek, Zoltan |0 P:(DE-H253)PIP1013492 |b 6 |
700 | 1 | _ | |a Ziaja, Beata |0 P:(DE-H253)PIP1003464 |b 7 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s42005-024-01768-6 |b Springer Science and Business Media LLC |d 2024-08-20 |n 1 |p 281 |3 journal-article |2 Crossref |t Communications Physics |v 7 |y 2024 |x 2399-3650 |
773 | _ | _ | |a 10.1038/s42005-024-01768-6 |g Vol. 7, no. 1, p. 281 |0 PERI:(DE-600)2921913-9 |n 1 |p 281 |t Communications Physics |v 7 |y 2024 |x 2399-3650 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/604238/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/604238/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:604238 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1092209 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 0 |6 P:(DE-H253)PIP1092209 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1092209 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1020283 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 1 |6 P:(DE-H253)PIP1020283 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1082165 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1082165 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1009086 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1008260 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1008260 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1006340 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1006340 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1013492 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 6 |6 P:(DE-H253)PIP1013492 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1003464 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 7 |6 P:(DE-H253)PIP1003464 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1003464 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-10T15:36:49Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b COMMUN PHYS-UK : 2022 |d 2024-12-20 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-1-PBIO-20210408 |k FS-CFEL-1-PBIO |l FS-CFEL-1 Fachgruppe PBIO |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-3-20120731 |k FS-CFEL-3 |l CFEL-Theory |x 1 |
920 | 1 | _ | |0 I:(DE-H253)CFEL-DESYT-20160930 |k CFEL-DESYT |l FS-CFEL-3 |x 2 |
920 | 1 | _ | |0 I:(DE-H253)FS-CFEL-XM-20210408 |k FS-CFEL-XM |l Gruppe CFEL-XM |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-1-PBIO-20210408 |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-3-20120731 |
980 | _ | _ | |a I:(DE-H253)CFEL-DESYT-20160930 |
980 | _ | _ | |a I:(DE-H253)FS-CFEL-XM-20210408 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1088/978-0-7503-2348-2 |9 -- missing cx lookup -- |2 Crossref |u Riley, D. Warm Dense Matter. IOP Series in Plasma Physics (IOP Publishing Ltd, 2021). |
999 | C | 5 | |a 10.1063/5.0138955 |1 T Dornheim |9 -- missing cx lookup -- |2 Crossref |u Dornheim, T. et al. Electronic density response of warm dense matter. Phys. Plasmas 30, 032705 (2023). |t Phys. Plasmas |v 30 |y 2023 |
999 | C | 5 | |a 10.1017/hpl.2018.53 |1 K Falk |9 -- missing cx lookup -- |2 Crossref |u Falk, K. Experimental methods for warm dense matter research. High. Power Laser Sci. 6, e59 (2018). |t High. Power Laser Sci. |v 6 |y 2018 |
999 | C | 5 | |a 10.1038/ncomms10970 |1 D Kraus |9 -- missing cx lookup -- |2 Crossref |u Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016). |t Nat. Commun. |v 7 |y 2016 |
999 | C | 5 | |a 10.1038/s41550-017-0219-9 |9 -- missing cx lookup -- |1 D Kraus |p 606 - |2 Crossref |u Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017). |t Nat. Astron. |v 1 |y 2017 |
999 | C | 5 | |a 10.1063/1.4916103 |1 A Lévy |9 -- missing cx lookup -- |2 Crossref |u Lévy, A. et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Phys. Plasmas 22, 030703 (2015). |t Phys. Plasmas |v 22 |y 2015 |
999 | C | 5 | |a 10.1038/nphoton.2015.41 |9 -- missing cx lookup -- |1 LB Fletcher |p 274 - |2 Crossref |u Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279 (2015). |t Nat. Photonics |v 9 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevB.93.115135 |9 -- missing cx lookup -- |2 Crossref |u Valenza, R. A. & Seidler, G. T. Warm dense crystallography. Phys. Rev. B 93, 1–7 (2016). |
999 | C | 5 | |a 10.1073/pnas.1711220115 |9 -- missing cx lookup -- |1 KR Beyerlein |p 5652 - |2 Crossref |u Beyerlein, K. R. et al. Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc. Natl Acad. Sci. USA 115, 5652–5657 (2018). |t Proc. Natl Acad. Sci. USA |v 115 |y 2018 |
999 | C | 5 | |a 10.1038/nature13266 |9 -- missing cx lookup -- |1 JA Sellberg |p 381 - |2 Crossref |u Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014). |t Nature |v 510 |y 2014 |
999 | C | 5 | |a 10.1038/ncomms9998 |1 A Nilsson |9 -- missing cx lookup -- |2 Crossref |u Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015). |t Nat. Commun. |v 6 |y 2015 |
999 | C | 5 | |a 10.1038/s41586-019-1114-6 |9 -- missing cx lookup -- |1 M Millot |p 251 - |2 Crossref |u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019). |t Nature |v 569 |y 2019 |
999 | C | 5 | |a 10.1126/science.abb9385 |9 -- missing cx lookup -- |1 KH Kim |p 978 - |2 Crossref |u Kim, K. H. et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 370, 978–982 (2020). |t Science |v 370 |y 2020 |
999 | C | 5 | |a 10.1107/S1600577515002349 |9 -- missing cx lookup -- |1 K Nass |p 225 - |2 Crossref |u Nass, K. et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22, 225–238 (2015). |t J. Synchrotron Radiat. |v 22 |y 2015 |
999 | C | 5 | |a 10.1038/s41467-020-15610-4 |1 K Nass |9 -- missing cx lookup -- |2 Crossref |u Nass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1021/acs.chemrev.5b00663 |9 -- missing cx lookup -- |1 K Amann-Winkel |p 7570 - |2 Crossref |u Amann-Winkel, K. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016). |t Chem. Rev. |v 116 |y 2016 |
999 | C | 5 | |a 10.1107/S160057751500449X |9 -- missing cx lookup -- |1 MN Liang |p 514 - |2 Crossref |u Liang, M. N. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015). |t J. Synchrotron Radiat. |v 22 |y 2015 |
999 | C | 5 | |a 10.1038/s41598-017-13710-8 |1 B Nagler |9 -- missing cx lookup -- |2 Crossref |u Nagler, B. et al. Focal spot and wavefront sensing of an X-ray free electron laser using Ronchi shearing interferometry. Sci. Rep. 7, 13698 (2017). |t Sci. Rep. |v 7 |y 2017 |
999 | C | 5 | |a 10.1126/sciadv.1500837 |9 -- missing cx lookup -- |1 KR Ferguson |p e1500837 - |2 Crossref |u Ferguson, K. R. et al. Transient lattice contraction in the solid-to-plasma transition. Sci. Adv. 2, e1500837 (2016). |t Sci. Adv. |v 2 |y 2016 |
999 | C | 5 | |a 10.1107/S1600577515005317 |9 -- missing cx lookup -- |1 G Blaj |p 577 - |2 Crossref |u Blaj, G. et al. X-ray detectors at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 577–583 (2015). |t J. Synchrotron Radiat. |v 22 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevSTAB.14.120701 |1 Y Ding |9 -- missing cx lookup -- |2 Crossref |u Ding, Y. et al. Femtosecond x-ray pulse temporal characterization in free-electron lasers using a transverse deflector. Phys. Rev. ST Accel. Beams 14, 120701 (2011). |t Phys. Rev. ST Accel. Beams |v 14 |y 2011 |
999 | C | 5 | |a 10.1038/ncomms4762 |1 C Behrens |9 -- missing cx lookup -- |2 Crossref |u Behrens, C. et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 5, 3762 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.1107/S1600576716006014 |9 -- missing cx lookup -- |1 Z Jurek |p 1048 - |2 Crossref |u Jurek, Z., Son, S. K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Cryst. 49, 1048–1056 (2016). |t J. Appl. Cryst. |v 49 |y 2016 |
999 | C | 5 | |a 10.1038/ncomms5281 |1 BF Murphy |9 -- missing cx lookup -- |2 Crossref |u Murphy, B. F. et al. Femtosecond X-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 5, 4281 (2014). |t Nat. Commun. |v 5 |y 2014 |
999 | C | 5 | |a 10.1038/srep10977 |1 T Tachibana |9 -- missing cx lookup -- |2 Crossref |u Tachibana, T. et al. Nanoplasma formation by high intensity hard X-rays. Sci. Rep. 5, 10977 (2015). |t Sci. Rep. |v 5 |y 2015 |
999 | C | 5 | |a 10.1103/PhysRevA.83.069906 |9 -- missing cx lookup -- |1 SK Son |p 069906 - |2 Crossref |u Son, S. K., Young, I. D. & Santra, R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83, 069906 (2011). |t Phys. Rev. A |v 83 |y 2011 |
999 | C | 5 | |a 10.1103/PhysRevA.85.063415 |1 SK Son |9 -- missing cx lookup -- |2 Crossref |u Son, S. K. & Santra, R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A 85, 063415 (2012). |t Phys. Rev. A |v 85 |y 2012 |
999 | C | 5 | |a 10.1103/PhysRevLett.120.223201 |9 -- missing cx lookup -- |1 Y Kumagai |p 223201 - |2 Crossref |u Kumagai, Y. et al. Radiation-induced chemical dynamics in Ar clusters exposed to strong X-ray pulses. Phys. Rev. Lett. 120, 223201 (2018). |t Phys. Rev. Lett. |v 120 |y 2018 |
999 | C | 5 | |a 10.1063/1.4958887 |9 -- missing cx lookup -- |1 MM Abdullah |p 054101 - |2 Crossref |u Abdullah, M. M., Jurek, Z., Son, S. K. & Santra, R. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity. Struct. Dyn. 3, 054101 (2016). |t Struct. Dyn. |v 3 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevE.96.023205 |1 MM Abdullah |9 -- missing cx lookup -- |2 Crossref |u Abdullah, M. M., Anurag, J. Z., Son, S. K. & Santra, R. Molecular-dynamics approach for studying the nonequilibrium behavior of x-ray-heated solid-density matter. Phys. Rev. E 96, 023205 (2017). |t Phys. Rev. E |v 96 |y 2017 |
999 | C | 5 | |a 10.1103/PhysRevLett.131.163201 |1 I Inoue |9 -- missing cx lookup -- |2 Crossref |u Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201 (2023). |t Phys. Rev. Lett. |v 131 |y 2023 |
999 | C | 5 | |a 10.1103/PhysRevA.76.042511 |9 -- missing cx lookup -- |1 SP Hau-Riege |p 042511 - |2 Crossref |u Hau-Riege, S. P. X-ray atomic scattering factors of low-Z ions with a core hole. Phys. Rev. A 76, 042511 (2007). |t Phys. Rev. A |v 76 |y 2007 |
999 | C | 5 | |a 10.1107/S2052252518011442 |9 -- missing cx lookup -- |1 MM Abdullah |p 699 - |2 Crossref |u Abdullah, M. M., Son, S. K., Jurek, Z. & Santra, R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCrJ 5, 699–705 (2018). |t IUCrJ |v 5 |y 2018 |
999 | C | 5 | |a 10.1016/0009-2614(75)80156-4 |9 -- missing cx lookup -- |1 GW Neilson |p 284 - |2 Crossref |u Neilson, G. W., Howe, R. A. & Enderby, J. E. The quasi-lattice structure in concentrated aqueous solutions. Chem. Phys. Lett. 33, 284–285 (1975). |t Chem. Phys. Lett. |v 33 |y 1975 |
999 | C | 5 | |a 10.1016/0009-2614(78)85298-1 |9 -- missing cx lookup -- |1 R Caminiti |p 600 - |2 Crossref |u Caminiti, R. & Magini, M. Small-angle maxima and cation-cation distances. Differences between iron nitrate and perchlorate solutions. Chem. Phys. Lett. 54, 600–602 (1978). |t Chem. Phys. Lett. |v 54 |y 1978 |
999 | C | 5 | |a 10.1063/1.3533958 |9 -- missing cx lookup -- |1 I Waluyo |p 064513 - |2 Crossref |u Waluyo, I. et al. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 134, 064513 (2011). |t J. Chem. Phys. |v 134 |y 2011 |
999 | C | 5 | |a 10.1038/s41467-018-04330-5 |1 F Perakis |9 -- missing cx lookup -- |2 Crossref |u Perakis, F. et al. Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 9, 1917 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1038/s41467-018-04178-9 |1 W Roseker |9 -- missing cx lookup -- |2 Crossref |u Roseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704 (2018). |t Nat. Commun. |v 9 |y 2018 |
999 | C | 5 | |a 10.1073/pnas.2003337117 |9 -- missing cx lookup -- |1 F Lehmkuhler |p 24110 - |2 Crossref |u Lehmkuhler, F. et al. Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc. Nat. Acad. Sci. USA 117, 24110–24116 (2020). |t Proc. Nat. Acad. Sci. USA |v 117 |y 2020 |
999 | C | 5 | |a 10.1038/s41467-020-20036-z |1 Y Shinohara |9 -- missing cx lookup -- |2 Crossref |u Shinohara, Y. et al. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 11, 6213 (2020). |t Nat. Commun. |v 11 |y 2020 |
999 | C | 5 | |a 10.1103/PhysRevResearch.4.013022 |9 -- missing cx lookup -- |1 E Zarkadoula |p 013022 - |2 Crossref |u Zarkadoula, E., Shinohara, Y. & Egami, T. X-ray free-electron laser heating of water at picosecond time scale. Phys. Rev. Res. 4, 013022 (2022). |t Phys. Rev. Res. |v 4 |y 2022 |
999 | C | 5 | |a 10.1038/s41467-022-33154-7 |1 M Reiser |9 -- missing cx lookup -- |2 Crossref |u Reiser, M. et al. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat. Commun. 13, 5528 (2022). |t Nat. Commun. |v 13 |y 2022 |
999 | C | 5 | |a 10.1126/science.287.5458.1615 |9 -- missing cx lookup -- |1 I Schlichting |p 1615 - |2 Crossref |u Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000). |t Science |v 287 |y 2000 |
999 | C | 5 | |a 10.1063/1.3693040 |9 -- missing cx lookup -- |1 U Weierstall |p 035108 - |2 Crossref |u Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012). |t Rev. Sci. Instrum. |v 83 |y 2012 |
999 | C | 5 | |a 10.1038/ncomms7369 |1 A Marinelli |9 -- missing cx lookup -- |2 Crossref |u Marinelli, A. et al. High-intensity double-pulse X-ray free-electron laser. Nat. Commun. 6, 6369 (2015). |t Nat. Commun. |v 6 |y 2015 |
999 | C | 5 | |a 10.1107/S1600577515022559 |9 -- missing cx lookup -- |1 D Rich |p 3 - |2 Crossref |u Rich, D. et al. The LCLS variable-energy hard X-ray single-shot spectrometer. J. Synchrotron Radiat. 23, 3–9 (2016). |t J. Synchrotron Radiat. |v 23 |y 2016 |
999 | C | 5 | |a 10.1103/PhysRevApplied.4.014004 |1 J Chalupsky |9 -- missing cx lookup -- |2 Crossref |u Chalupsky, J. et al. Imprinting a focused X-ray laser beam to measure its full spatial characteristics. Phys. Rev. Appl. 4, 014004 (2015). |t Phys. Rev. Appl. |v 4 |y 2015 |
999 | C | 5 | |a 10.1107/S1600576716004349 |9 -- missing cx lookup -- |1 D Damiani |p 672 - |2 Crossref |u Damiani, D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 49, 672–679 (2016). |t J. Appl. Cryst. |v 49 |y 2016 |
999 | C | 5 | |a 10.1063/5.0014475 |1 JC Phillips |9 -- missing cx lookup -- |2 Crossref |u Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020). |t J. Chem. Phys. |v 153 |y 2020 |
999 | C | 5 | |a 10.1016/0263-7855(96)00018-5 |9 -- missing cx lookup -- |1 W Humphrey |p 33 - |2 Crossref |u Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). |t J. Mol. Graph. |v 14 |y 1996 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|