001     604238
005     20250715171340.0
024 7 _ |a 10.1038/s42005-024-01768-6
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-01036
|2 datacite_doi
024 7 _ |a altmetric:166515355
|2 altmetric
024 7 _ |a WOS:001295013200001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4401975880
037 _ _ |a PUBDB-2024-01036
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Stransky, Michal
|0 P:(DE-H253)PIP1092209
|b 0
245 _ _ |a Ionization by XFEL radiation produces distinct structure in liquid water
260 _ _ |a London
|c 2024
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725528007_2836047
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm$^2$), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O$^{1+}$ and O$^{2+}$ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
542 _ _ |i 2024-08-20
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-08-20
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Lane, Thomas
|0 P:(DE-H253)PIP1020283
|b 1
|e Corresponding author
700 1 _ |a Gorel, Alexander
|0 P:(DE-H253)PIP1082165
|b 2
700 1 _ |a Boutet, Sebastien
|0 P:(DE-H253)PIP1009086
|b 3
700 1 _ |a Schlichting, Ilme
|0 P:(DE-H253)PIP1008260
|b 4
|e Corresponding author
700 1 _ |a Mancuso, Adrian
|0 P:(DE-H253)PIP1006340
|b 5
700 1 _ |a Jurek, Zoltan
|0 P:(DE-H253)PIP1013492
|b 6
700 1 _ |a Ziaja, Beata
|0 P:(DE-H253)PIP1003464
|b 7
|e Corresponding author
773 1 8 |a 10.1038/s42005-024-01768-6
|b Springer Science and Business Media LLC
|d 2024-08-20
|n 1
|p 281
|3 journal-article
|2 Crossref
|t Communications Physics
|v 7
|y 2024
|x 2399-3650
773 _ _ |a 10.1038/s42005-024-01768-6
|g Vol. 7, no. 1, p. 281
|0 PERI:(DE-600)2921913-9
|n 1
|p 281
|t Communications Physics
|v 7
|y 2024
|x 2399-3650
856 4 _ |u https://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/604238/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/604238/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:604238
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1092209
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 0
|6 P:(DE-H253)PIP1092209
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1092209
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1020283
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 1
|6 P:(DE-H253)PIP1020283
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1082165
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1082165
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1009086
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1008260
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1008260
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1006340
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1006340
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1013492
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 6
|6 P:(DE-H253)PIP1013492
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1003464
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 7
|6 P:(DE-H253)PIP1003464
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1003464
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:49Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:36:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN PHYS-UK : 2022
|d 2024-12-20
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-CFEL-1-PBIO-20210408
|k FS-CFEL-1-PBIO
|l FS-CFEL-1 Fachgruppe PBIO
|x 0
920 1 _ |0 I:(DE-H253)FS-CFEL-3-20120731
|k FS-CFEL-3
|l CFEL-Theory
|x 1
920 1 _ |0 I:(DE-H253)CFEL-DESYT-20160930
|k CFEL-DESYT
|l FS-CFEL-3
|x 2
920 1 _ |0 I:(DE-H253)FS-CFEL-XM-20210408
|k FS-CFEL-XM
|l Gruppe CFEL-XM
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-CFEL-1-PBIO-20210408
980 _ _ |a I:(DE-H253)FS-CFEL-3-20120731
980 _ _ |a I:(DE-H253)CFEL-DESYT-20160930
980 _ _ |a I:(DE-H253)FS-CFEL-XM-20210408
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1088/978-0-7503-2348-2
|9 -- missing cx lookup --
|2 Crossref
|u Riley, D. Warm Dense Matter. IOP Series in Plasma Physics (IOP Publishing Ltd, 2021).
999 C 5 |a 10.1063/5.0138955
|1 T Dornheim
|9 -- missing cx lookup --
|2 Crossref
|u Dornheim, T. et al. Electronic density response of warm dense matter. Phys. Plasmas 30, 032705 (2023).
|t Phys. Plasmas
|v 30
|y 2023
999 C 5 |a 10.1017/hpl.2018.53
|1 K Falk
|9 -- missing cx lookup --
|2 Crossref
|u Falk, K. Experimental methods for warm dense matter research. High. Power Laser Sci. 6, e59 (2018).
|t High. Power Laser Sci.
|v 6
|y 2018
999 C 5 |a 10.1038/ncomms10970
|1 D Kraus
|9 -- missing cx lookup --
|2 Crossref
|u Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).
|t Nat. Commun.
|v 7
|y 2016
999 C 5 |a 10.1038/s41550-017-0219-9
|9 -- missing cx lookup --
|1 D Kraus
|p 606 -
|2 Crossref
|u Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).
|t Nat. Astron.
|v 1
|y 2017
999 C 5 |a 10.1063/1.4916103
|1 A Lévy
|9 -- missing cx lookup --
|2 Crossref
|u Lévy, A. et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Phys. Plasmas 22, 030703 (2015).
|t Phys. Plasmas
|v 22
|y 2015
999 C 5 |a 10.1038/nphoton.2015.41
|9 -- missing cx lookup --
|1 LB Fletcher
|p 274 -
|2 Crossref
|u Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279 (2015).
|t Nat. Photonics
|v 9
|y 2015
999 C 5 |a 10.1103/PhysRevB.93.115135
|9 -- missing cx lookup --
|2 Crossref
|u Valenza, R. A. & Seidler, G. T. Warm dense crystallography. Phys. Rev. B 93, 1–7 (2016).
999 C 5 |a 10.1073/pnas.1711220115
|9 -- missing cx lookup --
|1 KR Beyerlein
|p 5652 -
|2 Crossref
|u Beyerlein, K. R. et al. Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc. Natl Acad. Sci. USA 115, 5652–5657 (2018).
|t Proc. Natl Acad. Sci. USA
|v 115
|y 2018
999 C 5 |a 10.1038/nature13266
|9 -- missing cx lookup --
|1 JA Sellberg
|p 381 -
|2 Crossref
|u Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).
|t Nature
|v 510
|y 2014
999 C 5 |a 10.1038/ncomms9998
|1 A Nilsson
|9 -- missing cx lookup --
|2 Crossref
|u Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1038/s41586-019-1114-6
|9 -- missing cx lookup --
|1 M Millot
|p 251 -
|2 Crossref
|u Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).
|t Nature
|v 569
|y 2019
999 C 5 |a 10.1126/science.abb9385
|9 -- missing cx lookup --
|1 KH Kim
|p 978 -
|2 Crossref
|u Kim, K. H. et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 370, 978–982 (2020).
|t Science
|v 370
|y 2020
999 C 5 |a 10.1107/S1600577515002349
|9 -- missing cx lookup --
|1 K Nass
|p 225 -
|2 Crossref
|u Nass, K. et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22, 225–238 (2015).
|t J. Synchrotron Radiat.
|v 22
|y 2015
999 C 5 |a 10.1038/s41467-020-15610-4
|1 K Nass
|9 -- missing cx lookup --
|2 Crossref
|u Nass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1021/acs.chemrev.5b00663
|9 -- missing cx lookup --
|1 K Amann-Winkel
|p 7570 -
|2 Crossref
|u Amann-Winkel, K. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016).
|t Chem. Rev.
|v 116
|y 2016
999 C 5 |a 10.1107/S160057751500449X
|9 -- missing cx lookup --
|1 MN Liang
|p 514 -
|2 Crossref
|u Liang, M. N. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).
|t J. Synchrotron Radiat.
|v 22
|y 2015
999 C 5 |a 10.1038/s41598-017-13710-8
|1 B Nagler
|9 -- missing cx lookup --
|2 Crossref
|u Nagler, B. et al. Focal spot and wavefront sensing of an X-ray free electron laser using Ronchi shearing interferometry. Sci. Rep. 7, 13698 (2017).
|t Sci. Rep.
|v 7
|y 2017
999 C 5 |a 10.1126/sciadv.1500837
|9 -- missing cx lookup --
|1 KR Ferguson
|p e1500837 -
|2 Crossref
|u Ferguson, K. R. et al. Transient lattice contraction in the solid-to-plasma transition. Sci. Adv. 2, e1500837 (2016).
|t Sci. Adv.
|v 2
|y 2016
999 C 5 |a 10.1107/S1600577515005317
|9 -- missing cx lookup --
|1 G Blaj
|p 577 -
|2 Crossref
|u Blaj, G. et al. X-ray detectors at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 577–583 (2015).
|t J. Synchrotron Radiat.
|v 22
|y 2015
999 C 5 |a 10.1103/PhysRevSTAB.14.120701
|1 Y Ding
|9 -- missing cx lookup --
|2 Crossref
|u Ding, Y. et al. Femtosecond x-ray pulse temporal characterization in free-electron lasers using a transverse deflector. Phys. Rev. ST Accel. Beams 14, 120701 (2011).
|t Phys. Rev. ST Accel. Beams
|v 14
|y 2011
999 C 5 |a 10.1038/ncomms4762
|1 C Behrens
|9 -- missing cx lookup --
|2 Crossref
|u Behrens, C. et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 5, 3762 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1107/S1600576716006014
|9 -- missing cx lookup --
|1 Z Jurek
|p 1048 -
|2 Crossref
|u Jurek, Z., Son, S. K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Cryst. 49, 1048–1056 (2016).
|t J. Appl. Cryst.
|v 49
|y 2016
999 C 5 |a 10.1038/ncomms5281
|1 BF Murphy
|9 -- missing cx lookup --
|2 Crossref
|u Murphy, B. F. et al. Femtosecond X-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 5, 4281 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1038/srep10977
|1 T Tachibana
|9 -- missing cx lookup --
|2 Crossref
|u Tachibana, T. et al. Nanoplasma formation by high intensity hard X-rays. Sci. Rep. 5, 10977 (2015).
|t Sci. Rep.
|v 5
|y 2015
999 C 5 |a 10.1103/PhysRevA.83.069906
|9 -- missing cx lookup --
|1 SK Son
|p 069906 -
|2 Crossref
|u Son, S. K., Young, I. D. & Santra, R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83, 069906 (2011).
|t Phys. Rev. A
|v 83
|y 2011
999 C 5 |a 10.1103/PhysRevA.85.063415
|1 SK Son
|9 -- missing cx lookup --
|2 Crossref
|u Son, S. K. & Santra, R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A 85, 063415 (2012).
|t Phys. Rev. A
|v 85
|y 2012
999 C 5 |a 10.1103/PhysRevLett.120.223201
|9 -- missing cx lookup --
|1 Y Kumagai
|p 223201 -
|2 Crossref
|u Kumagai, Y. et al. Radiation-induced chemical dynamics in Ar clusters exposed to strong X-ray pulses. Phys. Rev. Lett. 120, 223201 (2018).
|t Phys. Rev. Lett.
|v 120
|y 2018
999 C 5 |a 10.1063/1.4958887
|9 -- missing cx lookup --
|1 MM Abdullah
|p 054101 -
|2 Crossref
|u Abdullah, M. M., Jurek, Z., Son, S. K. & Santra, R. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity. Struct. Dyn. 3, 054101 (2016).
|t Struct. Dyn.
|v 3
|y 2016
999 C 5 |a 10.1103/PhysRevE.96.023205
|1 MM Abdullah
|9 -- missing cx lookup --
|2 Crossref
|u Abdullah, M. M., Anurag, J. Z., Son, S. K. & Santra, R. Molecular-dynamics approach for studying the nonequilibrium behavior of x-ray-heated solid-density matter. Phys. Rev. E 96, 023205 (2017).
|t Phys. Rev. E
|v 96
|y 2017
999 C 5 |a 10.1103/PhysRevLett.131.163201
|1 I Inoue
|9 -- missing cx lookup --
|2 Crossref
|u Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201 (2023).
|t Phys. Rev. Lett.
|v 131
|y 2023
999 C 5 |a 10.1103/PhysRevA.76.042511
|9 -- missing cx lookup --
|1 SP Hau-Riege
|p 042511 -
|2 Crossref
|u Hau-Riege, S. P. X-ray atomic scattering factors of low-Z ions with a core hole. Phys. Rev. A 76, 042511 (2007).
|t Phys. Rev. A
|v 76
|y 2007
999 C 5 |a 10.1107/S2052252518011442
|9 -- missing cx lookup --
|1 MM Abdullah
|p 699 -
|2 Crossref
|u Abdullah, M. M., Son, S. K., Jurek, Z. & Santra, R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCrJ 5, 699–705 (2018).
|t IUCrJ
|v 5
|y 2018
999 C 5 |a 10.1016/0009-2614(75)80156-4
|9 -- missing cx lookup --
|1 GW Neilson
|p 284 -
|2 Crossref
|u Neilson, G. W., Howe, R. A. & Enderby, J. E. The quasi-lattice structure in concentrated aqueous solutions. Chem. Phys. Lett. 33, 284–285 (1975).
|t Chem. Phys. Lett.
|v 33
|y 1975
999 C 5 |a 10.1016/0009-2614(78)85298-1
|9 -- missing cx lookup --
|1 R Caminiti
|p 600 -
|2 Crossref
|u Caminiti, R. & Magini, M. Small-angle maxima and cation-cation distances. Differences between iron nitrate and perchlorate solutions. Chem. Phys. Lett. 54, 600–602 (1978).
|t Chem. Phys. Lett.
|v 54
|y 1978
999 C 5 |a 10.1063/1.3533958
|9 -- missing cx lookup --
|1 I Waluyo
|p 064513 -
|2 Crossref
|u Waluyo, I. et al. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 134, 064513 (2011).
|t J. Chem. Phys.
|v 134
|y 2011
999 C 5 |a 10.1038/s41467-018-04330-5
|1 F Perakis
|9 -- missing cx lookup --
|2 Crossref
|u Perakis, F. et al. Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 9, 1917 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1038/s41467-018-04178-9
|1 W Roseker
|9 -- missing cx lookup --
|2 Crossref
|u Roseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1073/pnas.2003337117
|9 -- missing cx lookup --
|1 F Lehmkuhler
|p 24110 -
|2 Crossref
|u Lehmkuhler, F. et al. Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc. Nat. Acad. Sci. USA 117, 24110–24116 (2020).
|t Proc. Nat. Acad. Sci. USA
|v 117
|y 2020
999 C 5 |a 10.1038/s41467-020-20036-z
|1 Y Shinohara
|9 -- missing cx lookup --
|2 Crossref
|u Shinohara, Y. et al. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 11, 6213 (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1103/PhysRevResearch.4.013022
|9 -- missing cx lookup --
|1 E Zarkadoula
|p 013022 -
|2 Crossref
|u Zarkadoula, E., Shinohara, Y. & Egami, T. X-ray free-electron laser heating of water at picosecond time scale. Phys. Rev. Res. 4, 013022 (2022).
|t Phys. Rev. Res.
|v 4
|y 2022
999 C 5 |a 10.1038/s41467-022-33154-7
|1 M Reiser
|9 -- missing cx lookup --
|2 Crossref
|u Reiser, M. et al. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat. Commun. 13, 5528 (2022).
|t Nat. Commun.
|v 13
|y 2022
999 C 5 |a 10.1126/science.287.5458.1615
|9 -- missing cx lookup --
|1 I Schlichting
|p 1615 -
|2 Crossref
|u Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).
|t Science
|v 287
|y 2000
999 C 5 |a 10.1063/1.3693040
|9 -- missing cx lookup --
|1 U Weierstall
|p 035108 -
|2 Crossref
|u Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012).
|t Rev. Sci. Instrum.
|v 83
|y 2012
999 C 5 |a 10.1038/ncomms7369
|1 A Marinelli
|9 -- missing cx lookup --
|2 Crossref
|u Marinelli, A. et al. High-intensity double-pulse X-ray free-electron laser. Nat. Commun. 6, 6369 (2015).
|t Nat. Commun.
|v 6
|y 2015
999 C 5 |a 10.1107/S1600577515022559
|9 -- missing cx lookup --
|1 D Rich
|p 3 -
|2 Crossref
|u Rich, D. et al. The LCLS variable-energy hard X-ray single-shot spectrometer. J. Synchrotron Radiat. 23, 3–9 (2016).
|t J. Synchrotron Radiat.
|v 23
|y 2016
999 C 5 |a 10.1103/PhysRevApplied.4.014004
|1 J Chalupsky
|9 -- missing cx lookup --
|2 Crossref
|u Chalupsky, J. et al. Imprinting a focused X-ray laser beam to measure its full spatial characteristics. Phys. Rev. Appl. 4, 014004 (2015).
|t Phys. Rev. Appl.
|v 4
|y 2015
999 C 5 |a 10.1107/S1600576716004349
|9 -- missing cx lookup --
|1 D Damiani
|p 672 -
|2 Crossref
|u Damiani, D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 49, 672–679 (2016).
|t J. Appl. Cryst.
|v 49
|y 2016
999 C 5 |a 10.1063/5.0014475
|1 JC Phillips
|9 -- missing cx lookup --
|2 Crossref
|u Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
|t J. Chem. Phys.
|v 153
|y 2020
999 C 5 |a 10.1016/0263-7855(96)00018-5
|9 -- missing cx lookup --
|1 W Humphrey
|p 33 -
|2 Crossref
|u Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
|t J. Mol. Graph.
|v 14
|y 1996


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21