000604238 001__ 604238
000604238 005__ 20250715171340.0
000604238 0247_ $$2doi$$a10.1038/s42005-024-01768-6
000604238 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01036
000604238 0247_ $$2altmetric$$aaltmetric:166515355
000604238 0247_ $$2WOS$$aWOS:001295013200001
000604238 0247_ $$2openalex$$aopenalex:W4401975880
000604238 037__ $$aPUBDB-2024-01036
000604238 041__ $$aEnglish
000604238 082__ $$a530
000604238 1001_ $$0P:(DE-H253)PIP1092209$$aStransky, Michal$$b0
000604238 245__ $$aIonization by XFEL radiation produces distinct structure in liquid water
000604238 260__ $$aLondon$$bSpringer Nature$$c2024
000604238 3367_ $$2DRIVER$$aarticle
000604238 3367_ $$2DataCite$$aOutput Types/Journal article
000604238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725528007_2836047
000604238 3367_ $$2BibTeX$$aARTICLE
000604238 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604238 3367_ $$00$$2EndNote$$aJournal Article
000604238 520__ $$aIn the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm$^2$), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O$^{1+}$ and O$^{2+}$ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory. 
000604238 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000604238 536__ $$0G:(GEPRIS)390715994$$aDFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x1
000604238 542__ $$2Crossref$$i2024-08-20$$uhttps://creativecommons.org/licenses/by/4.0
000604238 542__ $$2Crossref$$i2024-08-20$$uhttps://creativecommons.org/licenses/by/4.0
000604238 588__ $$aDataset connected to DataCite
000604238 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x0
000604238 7001_ $$0P:(DE-H253)PIP1020283$$aLane, Thomas$$b1$$eCorresponding author
000604238 7001_ $$0P:(DE-H253)PIP1082165$$aGorel, Alexander$$b2
000604238 7001_ $$0P:(DE-H253)PIP1009086$$aBoutet, Sebastien$$b3
000604238 7001_ $$0P:(DE-H253)PIP1008260$$aSchlichting, Ilme$$b4$$eCorresponding author
000604238 7001_ $$0P:(DE-H253)PIP1006340$$aMancuso, Adrian$$b5
000604238 7001_ $$0P:(DE-H253)PIP1013492$$aJurek, Zoltan$$b6
000604238 7001_ $$0P:(DE-H253)PIP1003464$$aZiaja, Beata$$b7$$eCorresponding author
000604238 77318 $$2Crossref$$3journal-article$$a10.1038/s42005-024-01768-6$$bSpringer Science and Business Media LLC$$d2024-08-20$$n1$$p281$$tCommunications Physics$$v7$$x2399-3650$$y2024
000604238 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-024-01768-6$$gVol. 7, no. 1, p. 281$$n1$$p281$$tCommunications Physics$$v7$$x2399-3650$$y2024
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/HTML-Approval_of_scientific_publication.html
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/PDF-Approval_of_scientific_publication.pdf
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf$$yOpenAccess
000604238 8564_ $$uhttps://bib-pubdb1.desy.de/record/604238/files/s42005-024-01768-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000604238 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jDEAL$$lSpringerNature$$v10.40$$zEinzelnachweis Rechnung SN-2024-01442-b
000604238 8767_ $$92024-08-13$$d2024-08-13$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr
000604238 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt)
000604238 8767_ $$92024-08-13$$a52909833$$d2024-08-13$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt)
000604238 909CO $$ooai:bib-pubdb1.desy.de:604238$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000604238 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1092209$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000604238 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1092209$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000604238 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1092209$$aEuropean XFEL$$b0$$kXFEL.EU
000604238 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020283$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000604238 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1020283$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000604238 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082165$$aExternal Institute$$b2$$kExtern
000604238 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1082165$$aEuropean XFEL$$b2$$kXFEL.EU
000604238 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009086$$aExternal Institute$$b3$$kExtern
000604238 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008260$$aExternal Institute$$b4$$kExtern
000604238 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008260$$aEuropean XFEL$$b4$$kXFEL.EU
000604238 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006340$$aEuropean XFEL$$b5$$kXFEL.EU
000604238 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1006340$$aExternal Institute$$b5$$kExtern
000604238 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013492$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000604238 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1013492$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000604238 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003464$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000604238 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1003464$$aCentre for Free-Electron Laser Science$$b7$$kCFEL
000604238 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003464$$aEuropean XFEL$$b7$$kXFEL.EU
000604238 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000604238 9141_ $$y2024
000604238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000604238 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000604238 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000604238 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000604238 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000604238 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000604238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
000604238 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
000604238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:49Z
000604238 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000604238 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000604238 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000604238 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000604238 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000604238 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000604238 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000604238 9201_ $$0I:(DE-H253)FS-CFEL-1-PBIO-20210408$$kFS-CFEL-1-PBIO$$lFS-CFEL-1 Fachgruppe PBIO$$x0
000604238 9201_ $$0I:(DE-H253)FS-CFEL-3-20120731$$kFS-CFEL-3$$lCFEL-Theory$$x1
000604238 9201_ $$0I:(DE-H253)CFEL-DESYT-20160930$$kCFEL-DESYT$$lFS-CFEL-3$$x2
000604238 9201_ $$0I:(DE-H253)FS-CFEL-XM-20210408$$kFS-CFEL-XM$$lGruppe CFEL-XM$$x3
000604238 980__ $$ajournal
000604238 980__ $$aVDB
000604238 980__ $$aUNRESTRICTED
000604238 980__ $$aI:(DE-H253)FS-CFEL-1-PBIO-20210408
000604238 980__ $$aI:(DE-H253)FS-CFEL-3-20120731
000604238 980__ $$aI:(DE-H253)CFEL-DESYT-20160930
000604238 980__ $$aI:(DE-H253)FS-CFEL-XM-20210408
000604238 980__ $$aAPC
000604238 9801_ $$aAPC
000604238 9801_ $$aFullTexts
000604238 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/978-0-7503-2348-2$$uRiley, D. Warm Dense Matter. IOP Series in Plasma Physics (IOP Publishing Ltd, 2021).
000604238 999C5 $$1T Dornheim$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0138955$$tPhys. Plasmas$$uDornheim, T. et al. Electronic density response of warm dense matter. Phys. Plasmas 30, 032705 (2023).$$v30$$y2023
000604238 999C5 $$1K Falk$$2Crossref$$9-- missing cx lookup --$$a10.1017/hpl.2018.53$$tHigh. Power Laser Sci.$$uFalk, K. Experimental methods for warm dense matter research. High. Power Laser Sci. 6, e59 (2018).$$v6$$y2018
000604238 999C5 $$1D Kraus$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10970$$tNat. Commun.$$uKraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016).$$v7$$y2016
000604238 999C5 $$1D Kraus$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41550-017-0219-9$$p606 -$$tNat. Astron.$$uKraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).$$v1$$y2017
000604238 999C5 $$1A Lévy$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4916103$$tPhys. Plasmas$$uLévy, A. et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Phys. Plasmas 22, 030703 (2015).$$v22$$y2015
000604238 999C5 $$1LB Fletcher$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2015.41$$p274 -$$tNat. Photonics$$uFletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279 (2015).$$v9$$y2015
000604238 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.115135$$uValenza, R. A. & Seidler, G. T. Warm dense crystallography. Phys. Rev. B 93, 1–7 (2016).
000604238 999C5 $$1KR Beyerlein$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1711220115$$p5652 -$$tProc. Natl Acad. Sci. USA$$uBeyerlein, K. R. et al. Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc. Natl Acad. Sci. USA 115, 5652–5657 (2018).$$v115$$y2018
000604238 999C5 $$1JA Sellberg$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13266$$p381 -$$tNature$$uSellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).$$v510$$y2014
000604238 999C5 $$1A Nilsson$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms9998$$tNat. Commun.$$uNilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).$$v6$$y2015
000604238 999C5 $$1M Millot$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-019-1114-6$$p251 -$$tNature$$uMillot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).$$v569$$y2019
000604238 999C5 $$1KH Kim$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb9385$$p978 -$$tScience$$uKim, K. H. et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 370, 978–982 (2020).$$v370$$y2020
000604238 999C5 $$1K Nass$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515002349$$p225 -$$tJ. Synchrotron Radiat.$$uNass, K. et al. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron Radiat. 22, 225–238 (2015).$$v22$$y2015
000604238 999C5 $$1K Nass$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-15610-4$$tNat. Commun.$$uNass, K. et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 11, 1814 (2020).$$v11$$y2020
000604238 999C5 $$1K Amann-Winkel$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.5b00663$$p7570 -$$tChem. Rev.$$uAmann-Winkel, K. et al. X-ray and neutron scattering of water. Chem. Rev. 116, 7570–7589 (2016).$$v116$$y2016
000604238 999C5 $$1MN Liang$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057751500449X$$p514 -$$tJ. Synchrotron Radiat.$$uLiang, M. N. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).$$v22$$y2015
000604238 999C5 $$1B Nagler$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-017-13710-8$$tSci. Rep.$$uNagler, B. et al. Focal spot and wavefront sensing of an X-ray free electron laser using Ronchi shearing interferometry. Sci. Rep. 7, 13698 (2017).$$v7$$y2017
000604238 999C5 $$1KR Ferguson$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.1500837$$pe1500837 -$$tSci. Adv.$$uFerguson, K. R. et al. Transient lattice contraction in the solid-to-plasma transition. Sci. Adv. 2, e1500837 (2016).$$v2$$y2016
000604238 999C5 $$1G Blaj$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515005317$$p577 -$$tJ. Synchrotron Radiat.$$uBlaj, G. et al. X-ray detectors at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 577–583 (2015).$$v22$$y2015
000604238 999C5 $$1Y Ding$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.14.120701$$tPhys. Rev. ST Accel. Beams$$uDing, Y. et al. Femtosecond x-ray pulse temporal characterization in free-electron lasers using a transverse deflector. Phys. Rev. ST Accel. Beams 14, 120701 (2011).$$v14$$y2011
000604238 999C5 $$1C Behrens$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms4762$$tNat. Commun.$$uBehrens, C. et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 5, 3762 (2014).$$v5$$y2014
000604238 999C5 $$1Z Jurek$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716006014$$p1048 -$$tJ. Appl. Cryst.$$uJurek, Z., Son, S. K., Ziaja, B. & Santra, R. XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Cryst. 49, 1048–1056 (2016).$$v49$$y2016
000604238 999C5 $$1BF Murphy$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5281$$tNat. Commun.$$uMurphy, B. F. et al. Femtosecond X-ray-induced explosion of C60 at extreme intensity. Nat. Commun. 5, 4281 (2014).$$v5$$y2014
000604238 999C5 $$1T Tachibana$$2Crossref$$9-- missing cx lookup --$$a10.1038/srep10977$$tSci. Rep.$$uTachibana, T. et al. Nanoplasma formation by high intensity hard X-rays. Sci. Rep. 5, 10977 (2015).$$v5$$y2015
000604238 999C5 $$1SK Son$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.83.069906$$p069906 -$$tPhys. Rev. A$$uSon, S. K., Young, I. D. & Santra, R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A 83, 069906 (2011).$$v83$$y2011
000604238 999C5 $$1SK Son$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.85.063415$$tPhys. Rev. A$$uSon, S. K. & Santra, R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A 85, 063415 (2012).$$v85$$y2012
000604238 999C5 $$1Y Kumagai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.223201$$p223201 -$$tPhys. Rev. Lett.$$uKumagai, Y. et al. Radiation-induced chemical dynamics in Ar clusters exposed to strong X-ray pulses. Phys. Rev. Lett. 120, 223201 (2018).$$v120$$y2018
000604238 999C5 $$1MM Abdullah$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4958887$$p054101 -$$tStruct. Dyn.$$uAbdullah, M. M., Jurek, Z., Son, S. K. & Santra, R. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity. Struct. Dyn. 3, 054101 (2016).$$v3$$y2016
000604238 999C5 $$1MM Abdullah$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.96.023205$$tPhys. Rev. E$$uAbdullah, M. M., Anurag, J. Z., Son, S. K. & Santra, R. Molecular-dynamics approach for studying the nonequilibrium behavior of x-ray-heated solid-density matter. Phys. Rev. E 96, 023205 (2017).$$v96$$y2017
000604238 999C5 $$1I Inoue$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.131.163201$$tPhys. Rev. Lett.$$uInoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201 (2023).$$v131$$y2023
000604238 999C5 $$1SP Hau-Riege$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.042511$$p042511 -$$tPhys. Rev. A$$uHau-Riege, S. P. X-ray atomic scattering factors of low-Z ions with a core hole. Phys. Rev. A 76, 042511 (2007).$$v76$$y2007
000604238 999C5 $$1MM Abdullah$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252518011442$$p699 -$$tIUCrJ$$uAbdullah, M. M., Son, S. K., Jurek, Z. & Santra, R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCrJ 5, 699–705 (2018).$$v5$$y2018
000604238 999C5 $$1GW Neilson$$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(75)80156-4$$p284 -$$tChem. Phys. Lett.$$uNeilson, G. W., Howe, R. A. & Enderby, J. E. The quasi-lattice structure in concentrated aqueous solutions. Chem. Phys. Lett. 33, 284–285 (1975).$$v33$$y1975
000604238 999C5 $$1R Caminiti$$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(78)85298-1$$p600 -$$tChem. Phys. Lett.$$uCaminiti, R. & Magini, M. Small-angle maxima and cation-cation distances. Differences between iron nitrate and perchlorate solutions. Chem. Phys. Lett. 54, 600–602 (1978).$$v54$$y1978
000604238 999C5 $$1I Waluyo$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3533958$$p064513 -$$tJ. Chem. Phys.$$uWaluyo, I. et al. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 134, 064513 (2011).$$v134$$y2011
000604238 999C5 $$1F Perakis$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-04330-5$$tNat. Commun.$$uPerakis, F. et al. Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics. Nat. Commun. 9, 1917 (2018).$$v9$$y2018
000604238 999C5 $$1W Roseker$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-018-04178-9$$tNat. Commun.$$uRoseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704 (2018).$$v9$$y2018
000604238 999C5 $$1F Lehmkuhler$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.2003337117$$p24110 -$$tProc. Nat. Acad. Sci. USA$$uLehmkuhler, F. et al. Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc. Nat. Acad. Sci. USA 117, 24110–24116 (2020).$$v117$$y2020
000604238 999C5 $$1Y Shinohara$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-20036-z$$tNat. Commun.$$uShinohara, Y. et al. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 11, 6213 (2020).$$v11$$y2020
000604238 999C5 $$1E Zarkadoula$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.4.013022$$p013022 -$$tPhys. Rev. Res.$$uZarkadoula, E., Shinohara, Y. & Egami, T. X-ray free-electron laser heating of water at picosecond time scale. Phys. Rev. Res. 4, 013022 (2022).$$v4$$y2022
000604238 999C5 $$1M Reiser$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-33154-7$$tNat. Commun.$$uReiser, M. et al. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat. Commun. 13, 5528 (2022).$$v13$$y2022
000604238 999C5 $$1I Schlichting$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.287.5458.1615$$p1615 -$$tScience$$uSchlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).$$v287$$y2000
000604238 999C5 $$1U Weierstall$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3693040$$p035108 -$$tRev. Sci. Instrum.$$uWeierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012).$$v83$$y2012
000604238 999C5 $$1A Marinelli$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7369$$tNat. Commun.$$uMarinelli, A. et al. High-intensity double-pulse X-ray free-electron laser. Nat. Commun. 6, 6369 (2015).$$v6$$y2015
000604238 999C5 $$1D Rich$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515022559$$p3 -$$tJ. Synchrotron Radiat.$$uRich, D. et al. The LCLS variable-energy hard X-ray single-shot spectrometer. J. Synchrotron Radiat. 23, 3–9 (2016).$$v23$$y2016
000604238 999C5 $$1J Chalupsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.4.014004$$tPhys. Rev. Appl.$$uChalupsky, J. et al. Imprinting a focused X-ray laser beam to measure its full spatial characteristics. Phys. Rev. Appl. 4, 014004 (2015).$$v4$$y2015
000604238 999C5 $$1D Damiani$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716004349$$p672 -$$tJ. Appl. Cryst.$$uDamiani, D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 49, 672–679 (2016).$$v49$$y2016
000604238 999C5 $$1JC Phillips$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0014475$$tJ. Chem. Phys.$$uPhillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).$$v153$$y2020
000604238 999C5 $$1W Humphrey$$2Crossref$$9-- missing cx lookup --$$a10.1016/0263-7855(96)00018-5$$p33 -$$tJ. Mol. Graph.$$uHumphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).$$v14$$y1996