000604233 001__ 604233
000604233 005__ 20250715170659.0
000604233 0247_ $$2doi$$a10.1016/j.actamat.2024.119752
000604233 0247_ $$2ISSN$$a1359-6454
000604233 0247_ $$2ISSN$$a1873-2453
000604233 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-01035
000604233 0247_ $$2WOS$$aWOS:001187989800001
000604233 0247_ $$2openalex$$aopenalex:W4391719885
000604233 037__ $$aPUBDB-2024-01035
000604233 041__ $$aEnglish
000604233 082__ $$a670
000604233 1001_ $$00000-0002-4862-5734$$aChoisez, Laurine$$b0$$eCorresponding author
000604233 245__ $$aHydrogen-based direct reduction of combusted iron powder: Deep pre-oxidation, reduction kinetics and microstructural analysis
000604233 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
000604233 3367_ $$2DRIVER$$aarticle
000604233 3367_ $$2DataCite$$aOutput Types/Journal article
000604233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710491639_3156695
000604233 3367_ $$2BibTeX$$aARTICLE
000604233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604233 3367_ $$00$$2EndNote$$aJournal Article
000604233 500__ $$aFunding: F.R.S.FNRS chargée de recherche mandate (ID 40011141); Walter Benjamin Programme of the Deutsche Forschungsgemeinschaft (project number 468209039); ERC Advanced grant ROC (Grant Agreement No 101054368)
000604233 520__ $$aIron powder can be a sustainable alternative to fossil fuels in power supply due to its high energy density and abundance. Iron powder releases energy through exothermic oxidation (combustion), and stores back energy through its subsequent hydrogen-based reduction, establishing a circular loop for renewable energy supply. Hydrogen-based direct reduction is also gaining global momentum as possible future backbone technology for sustainable iron and steel production, with the aim to replace blast furnaces. Here, we investigate the microstructural formation mechanisms and reduction kinetics behind hydrogen-based direct reduction of combusted iron powder at moderate temperatures (400–500 °C) using thermogravimetry, ex-situ X-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy and electron backscatter diffraction, as well as in-situ high-energy X-ray diffraction. The influence of pre-oxidation treatment was studied by reducing both as-combusted iron powder (50 % magnetite and 50 % hematite) and the same powder after pre-oxidation (100 % hematite). A gas diffusion-limited reaction was obtained during the in-situ high-energy X-ray diffraction experiment, with successive hematite and magnetite reduction, and a strong increase in reduction kinetics with initial hematite content. Faster reduction kinetics were obtained during the thermogravimetry experiment, with simultaneous hematite and magnetite reduction. In this case, the reduction reaction was limited by a mix of phase boundary and nucleation and growth models, as analyzed by multi-step model fitting methods as well as by microstructural investigation. When not limited by gas diffusion, the pre-oxidation treatment showed almost no influence on the reduction time but a strong effect on the final microstructure of the reduced powder.
000604233 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000604233 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000604233 536__ $$0G:(DE-H253)I-20211077$$aFS-Proposal: I-20211077 (I-20211077)$$cI-20211077$$x2
000604233 542__ $$2Crossref$$i2024-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000604233 542__ $$2Crossref$$i2024-04-01$$uhttps://www.elsevier.com/legal/tdmrep-license
000604233 542__ $$2Crossref$$i2024-02-14$$uhttp://creativecommons.org/licenses/by-nc-nd/4.0/
000604233 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000604233 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000604233 7001_ $$aHemke, Kira$$b1
000604233 7001_ $$aÖzgün, Özge$$b2
000604233 7001_ $$0P:(DE-H253)PIP1010848$$aPistidda, Claudio$$b3
000604233 7001_ $$0P:(DE-H253)PIP1080153$$aJeppesen, Henrik$$b4
000604233 7001_ $$0P:(DE-H253)PIP1010873$$aRaabe, Dierk$$b5
000604233 7001_ $$aMa, Yan$$b6
000604233 77318 $$2Crossref$$3journal-article$$a10.1016/j.actamat.2024.119752$$bElsevier BV$$d2024-04-01$$p119752$$tActa Materialia$$v268$$x1359-6454$$y2024
000604233 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2024.119752$$gVol. 268, p. 119752 -$$p119752$$tActa materialia$$v268$$x1359-6454$$y2024
000604233 8564_ $$uhttps://doi.org/10.1016/j.actamat.2024.119752
000604233 8564_ $$uhttps://bib-pubdb1.desy.de/record/604233/files/2024_HyDR_combusted%20iorn%20powder.pdf$$yOpenAccess
000604233 8564_ $$uhttps://bib-pubdb1.desy.de/record/604233/files/2024_HyDR_combusted%20iorn%20powder.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000604233 909CO $$ooai:bib-pubdb1.desy.de:604233$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000604233 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010848$$aExternal Institute$$b3$$kExtern
000604233 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080153$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000604233 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010873$$aExternal Institute$$b5$$kExtern
000604233 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000604233 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000604233 9141_ $$y2024
000604233 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000604233 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000604233 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000604233 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000604233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000604233 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
000604233 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x0
000604233 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000604233 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x2
000604233 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x3
000604233 980__ $$ajournal
000604233 980__ $$aVDB
000604233 980__ $$aUNRESTRICTED
000604233 980__ $$aI:(DE-H253)FS-PET-D-20190712
000604233 980__ $$aI:(DE-H253)Hereon-20210428
000604233 980__ $$aI:(DE-H253)FS-PS-20131107
000604233 980__ $$aI:(DE-H253)HAS-User-20120731
000604233 9801_ $$aFullTexts
000604233 999C5 $$2Crossref$$uH. Ritchie, P. Rosado, M. Roser, Emissions by sector: where do greenhouse gases come from?, Ourworldindata.Org/Ghg-Emissions-by-Sector (2020).
000604233 999C5 $$1Bergthorson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pecs.2018.05.001$$p169 -$$tProg. Energy Combust. Sci.$$v68$$y2018
000604233 999C5 $$1Julien$$2Crossref$$9-- missing cx lookup --$$a10.1039/C7SE00004A$$p615 -$$tSustain. Energy Fuels.$$v1$$y2017
000604233 999C5 $$1Bergthorson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apenergy.2015.09.037$$p368 -$$tAppl. Energy$$v160$$y2015
000604233 999C5 $$1Patisson$$2Crossref$$9-- missing cx lookup --$$a10.3390/met10070922$$p1 -$$tMetals. (Basel)$$v10$$y2020
000604233 999C5 $$1Spreitzer$$2Crossref$$9-- missing cx lookup --$$a10.1002/srin.201900108$$tSteel. Res. Int.$$v90$$y2019
000604233 999C5 $$1Kawasaki$$2Crossref$$9-- missing cx lookup --$$a10.1002/aic.690080114$$p48 -$$tA.I.Ch.E. J.$$v8$$y1962
000604233 999C5 $$1Bonalde$$2Crossref$$9-- missing cx lookup --$$a10.2355/isijinternational.45.1255$$p1255 -$$tISIJ Int.$$v45$$y2005
000604233 999C5 $$1Murakami$$2Crossref$$9-- missing cx lookup --$$a10.2355/isijinternational.52.1447$$p1447 -$$tISIJ Int.$$v52$$y2012
000604233 999C5 $$1El-Husseiny$$2Crossref$$oEl-Husseiny 2015$$y2015
000604233 999C5 $$1Yi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.powtec.2014.09.018$$p290 -$$tPowder. Technol.$$v269$$y2015
000604233 999C5 $$1bin Zuo$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12613-015-1123-x$$p688 -$$tInt. J. Minerals. Metall. Mater.$$v22$$y2015
000604233 999C5 $$1Ghadi$$2Crossref$$oGhadi 2020$$y2020
000604233 999C5 $$1He$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijhydene.2020.10.263$$p4592 -$$tInt. J. Hydrogen. Energy$$v46$$y2021
000604233 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11771-022-5066-x$$p1856 -$$tJ. Cent. South. Univ.$$v29$$y2022
000604233 999C5 $$1Turkdogan$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02814970$$p3175 -$$tMetall. Trans.$$v2$$y1971
000604233 999C5 $$1Turkdogan$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02814971$$p3189 -$$tMetall. Trans.$$v2$$y1971
000604233 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1600-0692.2005.00722$$uR.J. Fruehan, Y. Li, L. Brabie, E.J. Kim, Final stage of reduction of iron ores by hydrogen, 2005.
000604233 999C5 $$1Qu$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.powtec.2019.06.048$$p26 -$$tPowder. Technol.$$v355$$y2019
000604233 999C5 $$1Wolfinger$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11663-021-02378-1$$p14 -$$tMetall. Materials Trans. B Process Metall. Mater. Process. Sci.$$v53$$y2022
000604233 999C5 $$1Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11663-021-02215-5$$p1955 -$$tMetall. Materials Trans. B Process Metall. Mater. Process. Sci.$$v52$$y2021
000604233 999C5 $$1Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12613-022-2511-7$$p1873 -$$tInt. J. Minerals Metall. Mater.$$v29$$y2022
000604233 999C5 $$1Wagner$$2Crossref$$oWagner 2006$$y2006
000604233 999C5 $$1Pineau$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tca.2005.10.004$$p89 -$$tThermochim. Acta$$v447$$y2006
000604233 999C5 $$1Pineau$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tca.2007.01.014$$p75 -$$tThermochim. Acta$$v456$$y2007
000604233 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijhydene.2023.01.201$$p16601 -$$tInt. J. Hydrogen. Energy$$v48$$y2023
000604233 999C5 $$1El-Zoka$$2Crossref$$9-- missing cx lookup --$$a10.1002/advs.202300626$$tAdv. Sci.$$y2023
000604233 999C5 $$1Zhou$$2Crossref$$oZhou 2023$$y2023
000604233 999C5 $$1Moukassi$$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02670879$$p125 -$$tMetall. Trans. B$$v14B$$y1983
000604233 999C5 $$1Fradet$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tca.2023.179552$$tThermochim. Acta$$v726$$y2023
000604233 999C5 $$1Hessels$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.powtec.2022.117540$$tPowder. Technol.$$y2022
000604233 999C5 $$1Souza Filho$$2Crossref$$9-- missing cx lookup --$$a10.1007/s11837-023-05829-z$$p2274 -$$tJOM$$v75$$y2023
000604233 999C5 $$1Edström$$2Crossref$$oEdström 1953$$y1953
000604233 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2021.116933$$tActa Mater.$$v212$$y2021
000604233 999C5 $$1Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12613-022-2511-7$$p1873 -$$tInt. J. Minerals. Metall. Mater.$$v29$$y2022
000604233 999C5 $$1Choisez$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2022.118261$$tActa Mater.$$v239$$y2022
000604233 999C5 $$1Monsen$$2Crossref$$oMonsen 1992$$y1992
000604233 999C5 $$1Longbottom$$2Crossref$$oLongbottom 2019$$y2019
000604233 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.combustflame.2023.112869$$uJ. Jean-Philyppe, A. Fujinawa, J.M. Bergthorson, X. Mi, The ignition of fine iron particles in the Knudsen transition regime, (2023). 10.1016/j.combustflame.2023.112869.
000604233 999C5 $$1Mi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.combustflame.2022.112011$$tCombust. Flame$$v240$$y2022
000604233 999C5 $$1Auinger$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4817310$$tRev. Sci. Instrum.$$v84$$y2013
000604233 999C5 $$1Dippel$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577515002222$$p675 -$$tJ. Synchrotron. Radiat.$$v22$$y2015
000604233 999C5 $$1Pistidda$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp510720x$$p934 -$$tJ. Phys. Chem. C$$v119$$y2015
000604233 999C5 $$1Ashiotis$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576715004306$$p510 -$$tJ. Appl. Crystallogr.$$v48$$y2015
000604233 999C5 $$1Lutterotti$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nimb.2009.09.053$$p334 -$$tNucl. Instrum. Methods Phys. Res. B$$v268$$y2010
000604233 999C5 $$1Cornell$$2Crossref$$oCornell 2003$$y2003
000604233 999C5 $$1Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1002/srin.202000687$$tSteel. Res. Int.$$v92$$y2021
000604233 999C5 $$1Zheng$$2Crossref$$oZheng 2022$$y2022
000604233 999C5 $$1Martin$$2Crossref$$oMartin 2005$$y2005
000604233 999C5 $$1Komatina$$2Crossref$$oKomatina 2004$$y2004
000604233 999C5 $$1Levenspiel$$2Crossref$$oLevenspiel 1998$$y1998
000604233 999C5 $$1Vyazovkin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tca.2011.03.034$$p1 -$$tThermochim. Acta$$v520$$y2011
000604233 999C5 $$1Khawam$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp062746a$$p17315 -$$tJ Phys Chem B$$v110$$y2006
000604233 999C5 $$1Bai$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2022.117899$$tActa Mater.$$v231$$y2022