000604167 001__ 604167
000604167 005__ 20250625124902.0
000604167 0247_ $$2doi$$a10.1021/acs.langmuir.9b00778
000604167 0247_ $$2ISSN$$a0743-7463
000604167 0247_ $$2ISSN$$a1520-5827
000604167 0247_ $$2altmetric$$aaltmetric:63812118
000604167 0247_ $$2pmid$$apmid:31283884
000604167 0247_ $$2WOS$$aWOS:000479019700006
000604167 037__ $$aPUBDB-2024-01026
000604167 041__ $$aEnglish
000604167 082__ $$a540
000604167 1001_ $$aFink, Lea$$b0
000604167 245__ $$aStructure and Interactions between Charged Lipid Membranes in the Presence of Multivalent Ions
000604167 260__ $$aWashington, DC$$bACS Publ.$$c2019
000604167 3367_ $$2DRIVER$$aarticle
000604167 3367_ $$2DataCite$$aOutput Types/Journal article
000604167 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712143703_2624473
000604167 3367_ $$2BibTeX$$aARTICLE
000604167 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604167 3367_ $$00$$2EndNote$$aJournal Article
000604167 520__ $$aWhen aqueous salt solutions contain multivalent ions (like Ca2+ or Mg2+), strong correlation effects may lead to ion-bridging, net attraction, and tight-coupling between like-charged interfaces. To examine the effects of surface charge density, temperature, salt type, and salt concentration on the structures of tightly coupled charged interfaces, we have used mixed lipid membranes, containing either saturated or unsaturated tails in the presence of multivalent ions. We discovered that tightly coupled membrane lamellar phases, dominated by attractive interactions, coexisted with weakly coupled lamellar phases, dominated by repulsive interactions. To control the membrane charge density, we mixed lipids with negatively charged headgroups, DLPS and DOPS, with their zwitterionic analogue having the same tails, DLPC and DOPC, respectively. Using solution X-ray scattering we measured the lamellar repeat distance, D, at different ion concentrations, temperatures, and membrane charge densities. The multivalent ions tightly coupled the mixed lipid bilayers whose charged lipid molar fraction was between 0.1 and 1. The repeat distance of the tightly coupled phase was about 4 nm for the DLPS/DLPC mixtures and about 5 nm for the DOPS/DOPC mixtures. In this phase, the repeat distance slightly increased with increasing temperature and decreased with increasing charge density. When the molar fraction of charged lipid was 0.1 or 0.25, a less tightly coupled phase coexisted with the tightly coupled phase. The weakly coupled lamellar phase had significantly larger D values, although they were consistently shorter than the D values in monovalent salt solutions with similar screening lengths.
000604167 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000604167 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000604167 693__ $$0EXP:(DE-H253)D-D1.2-20150101$$1EXP:(DE-H253)DORISIII-20150101$$6EXP:(DE-H253)D-D1.2-20150101$$aDORIS III$$fDORIS Beamline D1.2$$x0
000604167 7001_ $$aSteiner, Ariel$$b1
000604167 7001_ $$aSzekely, Or$$b2
000604167 7001_ $$aSzekely, Pablo$$b3
000604167 7001_ $$0P:(DE-H253)PIP1020022$$aRaviv, Uri$$b4$$eCorresponding author
000604167 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.9b00778$$gVol. 35, no. 30, p. 9694 - 9703$$n30$$p9694 - 9703$$tLangmuir$$v35$$x0743-7463$$y2019
000604167 8564_ $$uhttps://bib-pubdb1.desy.de/record/604167/files/fink-et-al-2019-structure-and-interactions-between-charged-lipid-membranes-in-the-presence-of-multivalent-ions.pdf$$yRestricted
000604167 8564_ $$uhttps://bib-pubdb1.desy.de/record/604167/files/fink-et-al-2019-structure-and-interactions-between-charged-lipid-membranes-in-the-presence-of-multivalent-ions.pdf?subformat=pdfa$$xpdfa$$yRestricted
000604167 909CO $$ooai:bib-pubdb1.desy.de:604167$$pVDB
000604167 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020022$$aExternal Institute$$b4$$kExtern
000604167 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000604167 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000604167 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2022$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
000604167 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000604167 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000604167 980__ $$ajournal
000604167 980__ $$aVDB
000604167 980__ $$aI:(DE-H253)HAS-User-20120731
000604167 980__ $$aUNRESTRICTED