Home > Publications database > Functionalizing Janus-structured Ti$_2$B$_2$ unveils exceptional capacity and performance in lithium-ion battery anodes > print |
001 | 603206 | ||
005 | 20250723171532.0 | ||
024 | 7 | _ | |a 10.1016/j.jcis.2024.01.137 |2 doi |
024 | 7 | _ | |a 0021-9797 |2 ISSN |
024 | 7 | _ | |a 1095-7103 |2 ISSN |
024 | 7 | _ | |a 38310772 |2 pmid |
024 | 7 | _ | |a WOS:001178132000001 |2 WOS |
024 | 7 | _ | |a openalex:W4391311228 |2 openalex |
037 | _ | _ | |a PUBDB-2024-00839 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Lu, Zhiqiang |b 0 |
245 | _ | _ | |a Functionalizing Janus-structured Ti$_2$B$_2$ unveils exceptional capacity and performance in lithium-ion battery anodes |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710505497_3156703 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a With the ever-growing demand for high-capacity energy storage technologies, lithium-ion batteries (LIBs) have drawn increasing attention. Ti$_2$B$_2$, a typical two-dimensional MBenes material, has been considered as a strong contender for anode materials of LIBs with significant performance. However, the limited Li storage capacity of MBenes has hindered its wide applications. To address this issue, we have functionalized Janus-structured MBenes, denoted as Ti$_2$B$_2$X$_a$X$_b$ (X$_a$X$_b$ = N, O, S, Se). Employing first-principles simulations based on density functional theory, we have investigated the geometric characteristics and electrochemical properties of Ti$_2$B$_2$X$_a$X$_b$. Our results reveal that Ti$_2$B$_2$NO exhibits an exceptionally large theoretical specific capacity of 1091.17 mAh·g$^{−1}$, improved by 2.4 times compared with the pristine Ti$_2$B$_2$ (456 mAh·g$^{−1}$). Li atoms on the O side of Ti$_2$B$_2$NO possess a low diffusion barrier of 0.33 eV, which is conducive to the rapid charging and discharging of the battery. Moreover, the open-circuit voltage of Ti$_2$B$_2$NO within the safe voltage range of 0–1 V ensures the safety of battery operation. Overall, our study sheds light on understanding the underlying mechanism of surface functionalization on the Li storage properties of Janus-structured MBenes from atomic-scale, laying the groundwork for future design of high-performance anode materials. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://doi.org/10.15223/policy-017 |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://doi.org/10.15223/policy-037 |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://doi.org/10.15223/policy-012 |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://doi.org/10.15223/policy-029 |
542 | _ | _ | |i 2024-05-01 |2 Crossref |u https://doi.org/10.15223/policy-004 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Kang, Yuchong |b 1 |
700 | 1 | _ | |a Du, Yingjie |b 2 |
700 | 1 | _ | |a Ma, Xiaoyun |b 3 |
700 | 1 | _ | |a Ma, Wei |0 P:(DE-H253)PIP1089033 |b 4 |e Corresponding author |
700 | 1 | _ | |a Zhang, Jin |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
773 | 1 | 8 | |a 10.1016/j.jcis.2024.01.137 |b Elsevier BV |d 2024-05-01 |p 662-670 |3 journal-article |2 Crossref |t Journal of Colloid and Interface Science |v 661 |y 2024 |x 0021-9797 |
773 | _ | _ | |a 10.1016/j.jcis.2024.01.137 |g Vol. 661, p. 662 - 670 |0 PERI:(DE-600)1469021-4 |p 662-670 |t Journal of colloid and interface science |v 661 |y 2024 |x 0021-9797 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603206/files/1-s2.0-S0021979724001450-main.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603206/files/1-s2.0-S0021979724001450-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:603206 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-H253)PIP1089033 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-20 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-20 |
920 | 1 | _ | |0 I:(DE-H253)MPSD-20120731 |k MPSD |l Forschungsgruppe für strukturelle Dynamik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)MPSD-20120731 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1142/S1793292018300074 |9 -- missing cx lookup -- |1 Hao |p 1830007 - |2 Crossref |t Nano |v 13 |y 2018 |
999 | C | 5 | |a 10.1002/aenm.202201834 |9 -- missing cx lookup -- |1 Chen |p 2201834 - |2 Crossref |t Adv. Energy Mater. |v 12 |y 2022 |
999 | C | 5 | |a 10.1021/acsaem.1c00874 |9 -- missing cx lookup -- |1 Merrill |p 7589 - |2 Crossref |t ACS Applied Energy Materials |v 4 |y 2021 |
999 | C | 5 | |a 10.1016/j.pecs.2019.03.002 |9 -- missing cx lookup -- |1 Wang |p 95 - |2 Crossref |t Prog. Energy Combust. Sci. |v 73 |y 2019 |
999 | C | 5 | |1 Bai |y 2021 |2 Crossref |o Bai 2021 |
999 | C | 5 | |a 10.1038/nmat3623 |9 -- missing cx lookup -- |1 Sasaki |p 569 - |2 Crossref |t Nat. Mater. |v 12 |y 2013 |
999 | C | 5 | |a 10.1038/nchem.680 |9 -- missing cx lookup -- |1 Tarascon |p 510 - |2 Crossref |t Nat. Chem. |v 2 |y 2010 |
999 | C | 5 | |a 10.1002/adfm.201200691 |9 -- missing cx lookup -- |1 Slater |p 947 - |2 Crossref |t Adv. Funct. Mater. |v 23 |y 2013 |
999 | C | 5 | |a 10.1016/j.ensm.2016.04.001 |9 -- missing cx lookup -- |1 Wang |p 103 - |2 Crossref |t Energy Storage Mater. |v 4 |y 2016 |
999 | C | 5 | |a 10.1021/nl101223k |9 -- missing cx lookup -- |1 Pollak |p 3386 - |2 Crossref |t Nano Lett. |v 10 |y 2010 |
999 | C | 5 | |a 10.1016/j.jpowsour.2012.05.110 |9 -- missing cx lookup -- |1 Yamamoto |p 479 - |2 Crossref |t J. Power Sources |v 217 |y 2012 |
999 | C | 5 | |a 10.1002/aenm.201502409 |9 -- missing cx lookup -- |1 Zhang |p 1502409 - |2 Crossref |t Adv. Energy Mater. |v 6 |y 2016 |
999 | C | 5 | |a 10.1016/j.nanoen.2016.03.013 |9 -- missing cx lookup -- |1 Jiang |p 97 - |2 Crossref |t Nano Energy |v 23 |y 2016 |
999 | C | 5 | |a 10.1002/adma.201304138 |9 -- missing cx lookup -- |1 Naguib |p 992 - |2 Crossref |t Adv. Mater. |v 26 |y 2014 |
999 | C | 5 | |a 10.1039/C5NR07909H |9 -- missing cx lookup -- |1 Shu |p 2918 - |2 Crossref |t Nanoscale |v 8 |y 2016 |
999 | C | 5 | |a 10.1002/adma.201800561 |9 -- missing cx lookup -- |1 Li |p 1800561 - |2 Crossref |t Adv. Mater. |v 30 |y 2018 |
999 | C | 5 | |a 10.1016/j.jmst.2018.02.024 |9 -- missing cx lookup -- |1 Zhang |p 2022 - |2 Crossref |t J. Mater. Sci. Technol. |v 34 |y 2018 |
999 | C | 5 | |a 10.1021/jacs.8b04705 |9 -- missing cx lookup -- |1 Alameda |p 8833 - |2 Crossref |t J. Am. Chem. Soc. |v 140 |y 2018 |
999 | C | 5 | |a 10.1002/adma.202108840 |9 -- missing cx lookup -- |1 Nair |p 2108840 - |2 Crossref |t Adv. Mater. |v 34 |y 2022 |
999 | C | 5 | |a 10.1039/D2TA03482D |9 -- missing cx lookup -- |1 Zhang |p 15865 - |2 Crossref |t J. Mater. Chem. A |v 10 |y 2022 |
999 | C | 5 | |a 10.1039/C7NH00197E |9 -- missing cx lookup -- |1 Jiang |p 335 - |2 Crossref |t Nanoscale Horiz. |v 3 |y 2018 |
999 | C | 5 | |a 10.1021/acsanm.9b01718 |9 -- missing cx lookup -- |1 Li |p 7220 - |2 Crossref |t ACS Applied Nano Materials |v 2 |y 2019 |
999 | C | 5 | |a 10.1039/C8CP03362E |9 -- missing cx lookup -- |1 Bo |p 22168 - |2 Crossref |t PCCP |v 20 |y 2018 |
999 | C | 5 | |a 10.1039/D0CP04204H |9 -- missing cx lookup -- |1 Li |p 22236 - |2 Crossref |t PCCP |v 22 |y 2020 |
999 | C | 5 | |a 10.1016/j.commatsci.2020.110273 |1 Wu |9 -- missing cx lookup -- |2 Crossref |t Comput. Mater. Sci |v 190 |y 2021 |
999 | C | 5 | |a 10.1021/acs.jpcc.1c04039 |9 -- missing cx lookup -- |1 Liu |p 18098 - |2 Crossref |t J. Phys. Chem. C |v 125 |y 2021 |
999 | C | 5 | |a 10.1016/j.apsusc.2022.153927 |1 Liang |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 599 |y 2022 |
999 | C | 5 | |a 10.1016/j.cap.2019.11.025 |9 -- missing cx lookup -- |1 Li |p 310 - |2 Crossref |t Curr. Appl Phys. |v 20 |y 2020 |
999 | C | 5 | |a 10.1021/acsnano.7b03186 |9 -- missing cx lookup -- |1 Zhang |p 8192 - |2 Crossref |t ACS Nano |v 11 |y 2017 |
999 | C | 5 | |a 10.1016/j.cplett.2019.136777 |1 Wang |9 -- missing cx lookup -- |2 Crossref |t Chem. Phys. Lett. |v 735 |y 2019 |
999 | C | 5 | |a 10.1021/acs.jpcc.8b07478 |9 -- missing cx lookup -- |1 Shang |p 23899 - |2 Crossref |t J. Phys. Chem. C |v 122 |y 2018 |
999 | C | 5 | |a 10.1103/PhysRevB.54.11169 |9 -- missing cx lookup -- |1 Kresse |p 11169 - |2 Crossref |t Phys. Rev. B |v 54 |y 1996 |
999 | C | 5 | |a 10.1016/0927-0256(96)00008-0 |9 -- missing cx lookup -- |1 Kresse |p 15 - |2 Crossref |t Comput. Mater. Sci |v 6 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevB.59.1758 |9 -- missing cx lookup -- |1 Kresse |p 1758 - |2 Crossref |t Phys. Rev. B |v 59 |y 1999 |
999 | C | 5 | |a 10.1103/PhysRevLett.77.3865 |9 -- missing cx lookup -- |1 Perdew |p 3865 - |2 Crossref |t Phys. Rev. Lett. |v 77 |y 1996 |
999 | C | 5 | |a 10.1103/PhysRevB.50.17953 |9 -- missing cx lookup -- |1 Blöchl |p 17953 - |2 Crossref |t Phys. Rev. B |v 50 |y 1994 |
999 | C | 5 | |a 10.1021/ct300715s |9 -- missing cx lookup -- |1 Lin |p 263 - |2 Crossref |t J. Chem. Theory Comput. |v 9 |y 2013 |
999 | C | 5 | |a 10.1063/1.1329672 |9 -- missing cx lookup -- |1 Henkelman |p 9901 - |2 Crossref |t J. Chem. Phys. |v 113 |y 2000 |
999 | C | 5 | |a 10.1021/acsanm.1c04040 |9 -- missing cx lookup -- |1 Zhang |p 2358 - |2 Crossref |t ACS Applied Nano Materials |v 5 |y 2022 |
999 | C | 5 | |a 10.1016/j.apsusc.2022.153619 |1 Wang |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 596 |y 2022 |
999 | C | 5 | |a 10.1088/1361-6528/abea37 |1 Li |9 -- missing cx lookup -- |2 Crossref |t Nanotechnology |v 32 |y 2021 |
999 | C | 5 | |a 10.1016/j.apsusc.2021.151002 |1 Huang |9 -- missing cx lookup -- |2 Crossref |t Appl. Surf. Sci. |v 569 |y 2021 |
999 | C | 5 | |a 10.1021/nl100865a |9 -- missing cx lookup -- |1 Uthaisar |p 2838 - |2 Crossref |t Nano Lett. |v 10 |y 2010 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|