Home > Publications database > Selective Interfacial Excited‐State Carrier Dynamics and Efficient Charge Separation in Borophene‐Based Heterostructures > print |
001 | 603205 | ||
005 | 20250723171524.0 | ||
024 | 7 | _ | |a 10.1002/adma.202307591 |2 doi |
024 | 7 | _ | |a 0935-9648 |2 ISSN |
024 | 7 | _ | |a 1521-4095 |2 ISSN |
024 | 7 | _ | |a altmetric:154714830 |2 altmetric |
024 | 7 | _ | |a pmid:37757801 |2 pmid |
024 | 7 | _ | |a WOS:001112692000001 |2 WOS |
024 | 7 | _ | |a openalex:W4387080829 |2 openalex |
037 | _ | _ | |a PUBDB-2024-00838 |
041 | _ | _ | |a English |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Kang, Yuchong |b 0 |
245 | _ | _ | |a Selective Interfacial Excited‐State Carrier Dynamics and Efficient Charge Separation in Borophene‐Based Heterostructures |
260 | _ | _ | |a Weinheim |c 2024 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710412617_2036243 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Borophene-based van der Waals heterostructures have demonstrated enormous potential in the realm of optoelectronic and photovoltaic devices, which has sparked a wide range of interest. However, a thorough understanding of the microscopic excited-state electronic dynamics at interfaces is lacking, which is essential for determining the macroscopic optoelectronic and photovoltaic performance of borophene-based devices. In this study, photoexcited carrier dynamics of $β_{12}$, $χ_3$, and $α$΄ borophene/MoS$_2$ heterostructures are systematically studied based on time-domain nonadiabatic molecular dynamics simulations. Different Schottky contacts are found in borophene/semiconductor heterostructures. The interplay between Schottky barriers, electronic coupling, and the involvement of different phonon modes collectively contribute to the unique carrier dynamics in borophene-based heterostructures. The diverse borophene allotropes within the heterostructures exhibit distinct and selective carrier transfer behaviors on an ultrafast timescale: electrons tunnel into α΄ borophene with an ultrafast transfer rate (≈29 fs) in $α$΄/MoS$_2$ heterostructures, whereas $β_{12}$ borophene only allows holes to migrate with a lifetime of 176 fs. The feature enables efficient charge separation and offers promising avenues for applications in optoelectronic and photovoltaic devices. This study provides insight into the interfacial carrier dynamics in borophene-based heterostructures, which is helpful in further design of advanced 2D boron-based optoelectronic and photovoltaic devices. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
542 | _ | _ | |i 2023-12-04 |2 Crossref |u http://onlinelibrary.wiley.com/termsAndConditions#vor |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Yang, Kun |b 1 |
700 | 1 | _ | |a Fu, Jing |b 2 |
700 | 1 | _ | |a Wang, Zongguo |b 3 |
700 | 1 | _ | |a Li, Xuao |b 4 |
700 | 1 | _ | |a Lu, Zhiqiang |b 5 |
700 | 1 | _ | |a Zhang, Jia |0 P:(DE-H253)PIP1102540 |b 6 |e Corresponding author |
700 | 1 | _ | |a Li, Haibo |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
700 | 1 | _ | |a Zhang, Jin |0 P:(DE-H253)PIP1090421 |b 8 |e Corresponding author |
700 | 1 | _ | |a Ma, Wei |0 P:(DE-H253)PIP1089033 |b 9 |e Corresponding author |
773 | 1 | 8 | |a 10.1002/adma.202307591 |b Wiley |d 2023-12-04 |n 5 |3 journal-article |2 Crossref |t Advanced Materials |v 36 |y 2023 |x 0935-9648 |
773 | _ | _ | |a 10.1002/adma.202307591 |g Vol. 36, no. 5, p. 2307591 |0 PERI:(DE-600)1474949-X |n 5 |p 2307591 |t Advanced materials |v 36 |y 2023 |x 0935-9648 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603205/files/Advanced%20Materials%20-%202023%20-%20Kang%20-%20Selective%20Interfacial%20Excited%E2%80%90State%20Carrier%20Dynamics%20and%20Efficient%20Charge%20Separation%20in.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603205/files/Advanced%20Materials%20-%202023%20-%20Kang%20-%20Selective%20Interfacial%20Excited%E2%80%90State%20Carrier%20Dynamics%20and%20Efficient%20Charge%20Separation%20in.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:603205 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1102540 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1090421 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1089033 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-21 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-13 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2022 |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-13 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2022 |d 2024-12-13 |
920 | 1 | _ | |0 I:(DE-H253)MPSD-20120731 |k MPSD |l Forschungsgruppe für strukturelle Dynamik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)MPSD-20120731 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1002/adma.201900353 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/anie.201509285 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C7CS00261K |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nchem.2491 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41565-018-0157-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.125.116802 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 Zhang Z. |y 2017 |2 Crossref |o Zhang Z. 2017 |
999 | C | 5 | |a 10.1021/acs.nanolett.6b00070 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.abg1874 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/ange.201912824 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/jacs.7b10329 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adfm.201603300 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.9b19648 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C7TA08597D |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.cej.2020.126109 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ijhydene.2019.05.225 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/advs.202001801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/app9173446 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.1c03146 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D3TC00974B |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D1TA01940F |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.jpcc.0c08580 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsnano.1c04961 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6528/ac27db |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s12274-022-5185-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/ma15124084 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6528/ac3686 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.mssp.2022.106673 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D1TC04197E |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.105.136805 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1736034 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.matchemphys.2020.123305 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D2TA05928B |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physe.2019.113842 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/wcms.1411 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/ct400934c |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/ct400641n |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.163001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nn302696v |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D1NR00329A |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.chemphys.2022.111666 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/D0TC04691D |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1674-1056/28/1/017105 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.96.165402 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adfm.201201831 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C2NR32946H |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsami.0c12972 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl203669k |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.8b03005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adma.201104597 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/adma.201302393 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.ssc.2014.08.009 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acsnano.8b08909 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/molecules27030834 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1696792 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0304-4173(85)90014-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1634553 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.48.4978.2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.12.659 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep32625 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s10853-012-6423-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3382344 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 Zheng Q. |y 2019 |2 Crossref |o Zheng Q. 2019 |
999 | C | 5 | |a 10.1063/1.459170 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|