000603205 001__ 603205
000603205 005__ 20250723171524.0
000603205 0247_ $$2doi$$a10.1002/adma.202307591
000603205 0247_ $$2ISSN$$a0935-9648
000603205 0247_ $$2ISSN$$a1521-4095
000603205 0247_ $$2altmetric$$aaltmetric:154714830
000603205 0247_ $$2pmid$$apmid:37757801
000603205 0247_ $$2WOS$$aWOS:001112692000001
000603205 0247_ $$2openalex$$aopenalex:W4387080829
000603205 037__ $$aPUBDB-2024-00838
000603205 041__ $$aEnglish
000603205 082__ $$a660
000603205 1001_ $$aKang, Yuchong$$b0
000603205 245__ $$aSelective Interfacial Excited‐State Carrier Dynamics and Efficient Charge Separation in Borophene‐Based Heterostructures
000603205 260__ $$aWeinheim$$bWiley-VCH$$c2024
000603205 3367_ $$2DRIVER$$aarticle
000603205 3367_ $$2DataCite$$aOutput Types/Journal article
000603205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710412617_2036243
000603205 3367_ $$2BibTeX$$aARTICLE
000603205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000603205 3367_ $$00$$2EndNote$$aJournal Article
000603205 500__ $$aWaiting for fulltext
000603205 520__ $$aBorophene-based van der Waals heterostructures have demonstrated enormous potential in the realm of optoelectronic and photovoltaic devices, which has sparked a wide range of interest. However, a thorough understanding of the microscopic excited-state electronic dynamics at interfaces is lacking, which is essential for determining the macroscopic optoelectronic and photovoltaic performance of borophene-based devices. In this study, photoexcited carrier dynamics of $β_{12}$, $χ_3$, and $α$΄ borophene/MoS$_2$ heterostructures are systematically studied based on time-domain nonadiabatic molecular dynamics simulations. Different Schottky contacts are found in borophene/semiconductor heterostructures. The interplay between Schottky barriers, electronic coupling, and the involvement of different phonon modes collectively contribute to the unique carrier dynamics in borophene-based heterostructures. The diverse borophene allotropes within the heterostructures exhibit distinct and selective carrier transfer behaviors on an ultrafast timescale: electrons tunnel into α΄ borophene with an ultrafast transfer rate (≈29 fs) in $α$΄/MoS$_2$ heterostructures, whereas $β_{12}$ borophene only allows holes to migrate with a lifetime of 176 fs. The feature enables efficient charge separation and offers promising avenues for applications in optoelectronic and photovoltaic devices. This study provides insight into the interfacial carrier dynamics in borophene-based heterostructures, which is helpful in further design of advanced 2D boron-based optoelectronic and photovoltaic devices.
000603205 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000603205 542__ $$2Crossref$$i2023-12-04$$uhttp://onlinelibrary.wiley.com/termsAndConditions#vor
000603205 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000603205 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000603205 7001_ $$aYang, Kun$$b1
000603205 7001_ $$aFu, Jing$$b2
000603205 7001_ $$aWang, Zongguo$$b3
000603205 7001_ $$aLi, Xuao$$b4
000603205 7001_ $$aLu, Zhiqiang$$b5
000603205 7001_ $$0P:(DE-H253)PIP1102540$$aZhang, Jia$$b6$$eCorresponding author
000603205 7001_ $$0P:(DE-HGF)0$$aLi, Haibo$$b7$$eCorresponding author
000603205 7001_ $$0P:(DE-H253)PIP1090421$$aZhang, Jin$$b8$$eCorresponding author
000603205 7001_ $$0P:(DE-H253)PIP1089033$$aMa, Wei$$b9$$eCorresponding author
000603205 77318 $$2Crossref$$3journal-article$$a10.1002/adma.202307591$$bWiley$$d2023-12-04$$n5$$tAdvanced Materials$$v36$$x0935-9648$$y2023
000603205 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202307591$$gVol. 36, no. 5, p. 2307591$$n5$$p2307591$$tAdvanced materials$$v36$$x0935-9648$$y2023
000603205 8564_ $$uhttps://bib-pubdb1.desy.de/record/603205/files/Advanced%20Materials%20-%202023%20-%20Kang%20-%20Selective%20Interfacial%20Excited%E2%80%90State%20Carrier%20Dynamics%20and%20Efficient%20Charge%20Separation%20in.pdf$$yRestricted
000603205 8564_ $$uhttps://bib-pubdb1.desy.de/record/603205/files/Advanced%20Materials%20-%202023%20-%20Kang%20-%20Selective%20Interfacial%20Excited%E2%80%90State%20Carrier%20Dynamics%20and%20Efficient%20Charge%20Separation%20in.pdf?subformat=pdfa$$xpdfa$$yRestricted
000603205 909CO $$ooai:bib-pubdb1.desy.de:603205$$pVDB
000603205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102540$$aExternal Institute$$b6$$kExtern
000603205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090421$$aExternal Institute$$b8$$kExtern
000603205 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089033$$aExternal Institute$$b9$$kExtern
000603205 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000603205 9141_ $$y2024
000603205 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000603205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000603205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000603205 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000603205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000603205 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2024-12-13
000603205 9201_ $$0I:(DE-H253)MPSD-20120731$$kMPSD$$lForschungsgruppe für strukturelle Dynamik$$x0
000603205 980__ $$ajournal
000603205 980__ $$aVDB
000603205 980__ $$aI:(DE-H253)MPSD-20120731
000603205 980__ $$aUNRESTRICTED
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201900353
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201509285
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7CS00261K
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.2491
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-018-0157-4
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.125.116802
000603205 999C5 $$1Zhang Z.$$2Crossref$$oZhang Z. 2017$$y2017
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.6b00070
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abg1874
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ange.201912824
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.7b10329
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201603300
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.9b19648
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7TA08597D
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cej.2020.126109
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijhydene.2019.05.225
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/advs.202001801
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/app9173446
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.1c03146
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D3TC00974B
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1TA01940F
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpcc.0c08580
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.1c04961
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6528/ac27db
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s12274-022-5185-6
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/ma15124084
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6528/ac3686
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mssp.2022.106673
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1TC04197E
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.136805
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1736034
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.matchemphys.2020.123305
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D2TA05928B
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physe.2019.113842
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1411
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ct400934c
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ct400641n
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.163001
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nn302696v
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D1NR00329A
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chemphys.2022.111666
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/D0TC04691D
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1674-1056/28/1/017105
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.165402
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201201831
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C2NR32946H
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.0c12972
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl203669k
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.8b03005
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201104597
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201302393
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssc.2014.08.009
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsnano.8b08909
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/molecules27030834
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1696792
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-4173(85)90014-X
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1634553
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.4978.2
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.12.659
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep32625
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-012-6423-1
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3382344
000603205 999C5 $$1Zheng Q.$$2Crossref$$oZheng Q. 2019$$y2019
000603205 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.459170