| Home > Publications database > Bounding elastic photon-photon scattering at √s ≈ 1 MeV using a laser-plasma platform > print |
| 001 | 603090 | ||
| 005 | 20250723105626.0 | ||
| 024 | 7 | _ | |a 10.1016/j.physletb.2025.139247 |2 doi |
| 024 | 7 | _ | |a 0031-9163 |2 ISSN |
| 024 | 7 | _ | |a 0370-2693 |2 ISSN |
| 024 | 7 | _ | |a 1873-2410 |2 ISSN |
| 024 | 7 | _ | |a 1873-2445 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-00751 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:173173618 |2 altmetric |
| 024 | 7 | _ | |a arXiv:2407.12915 |2 arXiv |
| 024 | 7 | _ | |a WOS:001406101100001 |2 WOS |
| 024 | 7 | _ | |a openalex:W4406236727 |2 openalex |
| 037 | _ | _ | |a PUBDB-2024-00751 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 088 | _ | _ | |a arXiv:2407.12915 |2 arXiv |
| 088 | _ | _ | |a arXiv:2407.12915 |2 arXiv |
| 100 | 1 | _ | |a Watt, R. |b 0 |
| 245 | _ | _ | |a Bounding elastic photon-photon scattering at √s ≈ 1 MeV using a laser-plasma platform |
| 260 | _ | _ | |a Amsterdam |c 2025 |b North-Holland Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1741176219_4108798 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a 6 pages, 10 figures |
| 520 | _ | _ | |a We report on a direct search for elastic photon-photon scattering using x-ray and 𝛾 photons from a laser-plasma based experiment. A 𝛾 photon beam produced by a laser wakfield accelerator provided a broadband 𝛾 spectrum extending to above 𝐸𝛾 = 200 MeV. These were collided with a dense x-ray field produced by the emission from a laser heated germanium foil at 𝐸𝑥 ≈ 1.4 keV, corresponding to an invariant mass of √𝑠 = 1.22 ± 0.22 MeV. In these asymmetric collisions elastic scattering removes one x-ray and one high-energy 𝛾 photon and outputs two lower energy 𝛾 photons. No changes in the 𝛾 photon spectrum were observed as a result of the collisions allowing us to place a 95% upper bound on the cross section of 1.5 × 1015 μb. Although far from the QED prediction, this represents the lowest upper limit obtained so far for √𝑠 ≲ 1 MeV. |
| 536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
| 536 | _ | _ | |a TeX-MEx - Time resolved X-ray probing of Matter under Extreme conditions (682399) |0 G:(EU-Grant)682399 |c 682399 |f ERC-2015-CoG |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
| 700 | 1 | _ | |a Kettle, B. |b 1 |
| 700 | 1 | _ | |a Gerstmayr, E. |b 2 |
| 700 | 1 | _ | |a King, B. |0 P:(DE-H253)PIP1100286 |b 3 |e Corresponding author |
| 700 | 1 | _ | |a Alejo, A. |b 4 |
| 700 | 1 | _ | |a Astbury, S. |b 5 |
| 700 | 1 | _ | |a Baird, C. |b 6 |
| 700 | 1 | _ | |a Bohlen, S. |0 P:(DE-H253)PIP1019641 |b 7 |
| 700 | 1 | _ | |a Campbell, M. |b 8 |
| 700 | 1 | _ | |a Colgan, C. |b 9 |
| 700 | 1 | _ | |a Dannheim, D. |b 10 |
| 700 | 1 | _ | |a Gregory, C. |b 11 |
| 700 | 1 | _ | |a Harsh, H. |b 12 |
| 700 | 1 | _ | |a Hatfield, P. |b 13 |
| 700 | 1 | _ | |a Hinojosa, J. |b 14 |
| 700 | 1 | _ | |a Hollatz, D. |b 15 |
| 700 | 1 | _ | |a Katzir, Y. |b 16 |
| 700 | 1 | _ | |a Morton, J. |b 17 |
| 700 | 1 | _ | |a Murphy, C. D. |b 18 |
| 700 | 1 | _ | |a Nurnberg, A. |b 19 |
| 700 | 1 | _ | |a Osterhoff, J. |b 20 |
| 700 | 1 | _ | |a Pérez-Callejo, G. |b 21 |
| 700 | 1 | _ | |a Põder, K. |b 22 |
| 700 | 1 | _ | |a Rajeev, P. P. |b 23 |
| 700 | 1 | _ | |a Roedel, C. |b 24 |
| 700 | 1 | _ | |a Roeder, F. |b 25 |
| 700 | 1 | _ | |a Salgado, F. C. |b 26 |
| 700 | 1 | _ | |a Samarin, G. M. |b 27 |
| 700 | 1 | _ | |a Sarri, G. |b 28 |
| 700 | 1 | _ | |a Seidel, A. |b 29 |
| 700 | 1 | _ | |a Spindloe, C. |b 30 |
| 700 | 1 | _ | |a Steinke, S. |b 31 |
| 700 | 1 | _ | |a Streeter, M. J. V. |b 32 |
| 700 | 1 | _ | |a Thomas, A. G. R. |b 33 |
| 700 | 1 | _ | |a Underwood, C. |b 34 |
| 700 | 1 | _ | |a Wu, W. |b 35 |
| 700 | 1 | _ | |a Zepf, M. |b 36 |
| 700 | 1 | _ | |a Rose, S. J. |b 37 |
| 700 | 1 | _ | |a Mangles, S. P. D. |b 38 |
| 773 | _ | _ | |a 10.1016/j.physletb.2025.139247 |g Vol. 861, p. 139247 - |0 PERI:(DE-600)1466612-1 |p 139247 |t Physics letters / B |v 861 |y 2025 |x 0031-9163 |
| 787 | 0 | _ | |a Watt, R. et.al. |d Amsterdam : North-Holland Publ., 2025 |i IsParent |0 PUBDB-2025-00404 |r arXiv:2407.12915 |t Bounding elastic photon-photon scattering at $\sqrt{s}≈$ 1 MeV using a laser-plasma platform |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603090/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603090/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603090/files/1-s2.0-S0370269325000073-main.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/603090/files/1-s2.0-S0370269325000073-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:603090 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1100286 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1019641 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS LETT B : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-05T14:12:53Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-05T14:12:53Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-18 |w ger |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2022-09-05T14:12:53Z |
| 920 | 1 | _ | |0 I:(DE-H253)D3-20120731 |k D3 |l Strahlenschutz |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)MPA-20200816 |k MPA |l Plasma Accelerators |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-H253)D3-20120731 |
| 980 | _ | _ | |a I:(DE-H253)MPA-20200816 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|