001     602465
005     20250723171526.0
024 7 _ |a 10.1016/j.jajp.2024.100193
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-00607
|2 datacite_doi
024 7 _ |a WOS:001182023200001
|2 WOS
024 7 _ |a openalex:W4391179982
|2 openalex
037 _ _ |a PUBDB-2024-00607
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Akyel, Fatma
|0 P:(DE-H253)PIP1093917
|b 0
|e Corresponding author
245 _ _ |a In situ EDXRD measurement of the low transformation temperature effect in laser beam welded stainless steel
260 _ _ |a Amsterdam
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707215766_1665652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper investigates the low-transformation-temperature (LTT) effect in austenitic high alloy stainless steel and its influence on strain evolution of laser beam welded specimen. Due to the local heat input high temperature gradients occur between weld seam and base material, which lead to thermal and transformation induced strains. With targeted alloying in the weld seam the martensitic phase transformation can be shifted to lower temperatures resulting in the so-called Low Transformation Temperature (LTT) effect. This effect uses the volume expansion during the martensitic phase transformation. The delayed volume expansion during martensite phase transformation introduces continuous compressive strains until room temperature is reached and represents a mechanism that can serve to counteract the tensile strains caused by thermal shrinkage. The martensitic microstructure is achieved by dissimilar welding, combining an austenitic stainless steel base material with low alloyed filler wire. With this, the chemical composition of chromium and nickel is diluted, and a martensitic phase transformation occurs. As comparison, similar material combinations of stainless steel base material and conventional welding consumable are performed. In this work, in situ energy-dispersive x-ray diffraction (EDXRD) measurements in the beamline P61A at DESY are performed to investigate the expansion behaviour of martensite based on spectral data. Nine measuring positions are recorded and the strain evolution during welding and cooling of the samples are analysed. It is shown that the martensitic phase transformation changes the strain behaviour and implements compressive strain depending on the distance to the laser spot. It is found that the effect is orientation-dependent and that the highest strain influence is present in welding direction.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20210328 (I-20210328)
|0 G:(DE-H253)I-20210328
|c I-20210328
|x 1
536 _ _ |a SFB 1120 T05 - Verzugsminimierung durch Adaption des LTT-Effektes für das Laserstrahlschweißen von Leichtbaukonstruktionen im Schienenfahrzeugbau aus nichtrostenden Stählen (T05*) (504059309)
|0 G:(GEPRIS)504059309
|c 504059309
|x 2
542 _ _ |i 2024-06-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2024-06-01
|2 Crossref
|u https://www.elsevier.com/legal/tdmrep-license
542 _ _ |i 2024-01-20
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P61.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P61.1-20150101
|6 EXP:(DE-H253)P-P61.1-20150101
|x 0
700 1 _ |a Gamerdinger, M.
|0 P:(DE-H253)PIP1099159
|b 1
700 1 _ |a Mäde, K.
|0 P:(DE-H253)PIP1093918
|b 2
700 1 _ |a Murthy, K. R. Krishna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Olschok, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sharma, Rahul
|0 P:(DE-H253)PIP1031560
|b 5
700 1 _ |a Reisgen, U.
|0 P:(DE-H253)PIP1033490
|b 6
700 1 _ |a Abreu Faria, Guilherme
|0 P:(DE-H253)PIP1091310
|b 7
700 1 _ |a Dovzhenko, Gleb
|0 P:(DE-H253)PIP1026671
|b 8
773 1 8 |a 10.1016/j.jajp.2024.100193
|b Elsevier BV
|d 2024-06-01
|p 100193
|3 journal-article
|2 Crossref
|t Journal of Advanced Joining Processes
|v 9
|y 2024
|x 2666-3309
773 _ _ |a 10.1016/j.jajp.2024.100193
|g Vol. 9, p. 100193 -
|0 PERI:(DE-600)3010818-4
|p 100193
|t Journal of advanced joining processes
|v 9
|y 2024
|x 2666-3309
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/602465/files/1-s2.0-S2666330924000104-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/602465/files/1-s2.0-S2666330924000104-main.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:602465
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1093917
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1099159
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1093918
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1031560
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1033490
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 7
|6 P:(DE-H253)PIP1091310
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-588b)1231250402
|k Hereon
|b 7
|6 P:(DE-H253)PIP1091310
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1026671
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:28Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:28Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ADV JOIN PROCESS : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 1 _ |a FullTexts
999 C 5 |1 Akyel
|y 2022
|2 Crossref
|o Akyel 2022
999 C 5 |a 10.3390/met12060911
|9 -- missing cx lookup --
|1 Akyel
|p 911 -
|2 Crossref
|t Metals
|v 12
|y 2022
999 C 5 |a 10.1177/0309324711413190
|9 -- missing cx lookup --
|1 Altenkirch
|p 563 -
|2 Crossref
|t J. Strain. Anal. Eng. Des.
|v 46
|y 2011
999 C 5 |a 10.15282/jmes.13.1.2019.14.0384
|9 -- missing cx lookup --
|1 Azizpour
|p 4536 -
|2 Crossref
|t JMES
|v 13
|y 2019
999 C 5 |1 Bhadeshia
|y 2002
|2 Crossref
|o Bhadeshia 2002
999 C 5 |1 Bhadeshia
|y 2017
|2 Crossref
|o Bhadeshia 2017
999 C 5 |y 2016
|2 Crossref
|o 2016
999 C 5 |a 10.1002/srin.193300417
|9 -- missing cx lookup --
|1 Bühler
|p 283 -
|2 Crossref
|t Archiv für das Eisenhüttenwesen
|v 6
|y 1933
999 C 5 |a 10.1179/174328407X213116
|9 -- missing cx lookup --
|1 Francis
|p 1009 -
|2 Crossref
|t Mater. Sci. Technol.
|v 23
|y 2007
999 C 5 |1 Francis
|y 2008
|2 Crossref
|o Francis 2008
999 C 5 |a 10.1177/0309324711403824
|9 -- missing cx lookup --
|1 Genzel
|p 615 -
|2 Crossref
|t J. Strain. Anal. Eng. Des.
|v 46
|y 2011
999 C 5 |a 10.1016/j.jmatprotec.2014.06.008
|9 -- missing cx lookup --
|1 Gibmeier
|p 2739 -
|2 Crossref
|t J. Mater. Process. Technol.
|v 214
|y 2014
999 C 5 |a 10.1126/science.159.3818.973.b
|9 -- missing cx lookup --
|1 Giessen
|p 973 -
|2 Crossref
|t Science
|v 159
|y 1968
999 C 5 |a 10.1016/j.compositesb.2021.109086
|1 He
|9 -- missing cx lookup --
|2 Crossref
|t Compos. Part B: Eng.
|v 222
|y 2021
999 C 5 |1 Igwemezie
|y 2022
|2 Crossref
|o Igwemezie 2022
999 C 5 |1 Jenkins
|y 1996
|2 Crossref
|o Jenkins 1996
999 C 5 |1 Jones
|y 1977
|2 Crossref
|o Jones 1977
999 C 5 |a 10.1007/s40194-016-0407-8
|9 -- missing cx lookup --
|1 Klassen
|p 361 -
|2 Crossref
|t Weld. World
|v 61
|y 2017
999 C 5 |a 10.1007/BF03321286
|9 -- missing cx lookup --
|1 Kromm
|p 48 -
|2 Crossref
|t Weld. World
|v 55
|y 2011
999 C 5 |1 Kromm
|y 2011
|2 Crossref
|o Kromm 2011
999 C 5 |a 10.1007/BF02396775
|9 -- missing cx lookup --
|1 Laine
|p 269 -
|2 Crossref
|t J. Mater. Sci.
|v 15
|y 1980
999 C 5 |a 10.1179/136217108X382972
|9 -- missing cx lookup --
|1 Mikami
|p 97 -
|2 Crossref
|t Sci. Technol. Weld. Join.
|v 14
|y 2009
999 C 5 |1 Mitter
|y 1987
|2 Crossref
|o Mitter 1987
999 C 5 |1 Ohta
|y 1999
|2 Crossref
|o Ohta 1999
999 C 5 |a 10.2472/jsms.50.1086
|9 -- missing cx lookup --
|1 Ohta
|p 1086 -
|2 Crossref
|t J. Soc. Mater. Sci. Jpn.
|v 50
|y 2001
999 C 5 |a 10.1007/BF03266382
|9 -- missing cx lookup --
|1 Ohta
|p 38 -
|2 Crossref
|t Weld. World
|v 47
|y 2003
999 C 5 |1 Spieß
|y 2009
|2 Crossref
|o Spieß 2009
999 C 5 |1 Wang
|y 2002
|2 Crossref
|o Wang 2002
999 C 5 |a 10.1179/026708301101510087
|9 -- missing cx lookup --
|1 Withers
|p 366 -
|2 Crossref
|t Mater. Sci. Technol.
|v 17
|y 2001
999 C 5 |a 10.1515/mt-1977-190802
|9 -- missing cx lookup --
|1 Wohlfahrt
|p 272 -
|2 Crossref
|t Mater. Test.
|v 19
|y 1977
999 C 5 |1 Wohlfahrt
|y 1986
|2 Crossref
|o Wohlfahrt 1986


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21