001     602305
005     20250723171527.0
024 7 _ |a 10.1002/anie.202314238
|2 doi
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-00580
|2 datacite_doi
024 7 _ |a altmetric:157978278
|2 altmetric
024 7 _ |a pmid:38059423
|2 pmid
024 7 _ |a WOS:001138626400001
|2 WOS
024 7 _ |a openalex:W4389452713
|2 openalex
037 _ _ |a PUBDB-2024-00580
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gasevic, Thomas
|0 0000-0003-4864-1758
|b 0
245 _ _ |a Confined Lewis Pairs: Investigation of the $X^− →$ Si$_{20}$ Interaction in Halogen‐Encapsulating Silafulleranes
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1707125934_3708072
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A joint theoretical and experimental study on 32 endohedral silafullerane derivatives [X@Sii$_{20}$Yi$_{20}$] (X = F-I; Y = F-I, H, Me, Et) and Th-[Cl@Sii$_{20}$Hi$_{12}$Y$_8$] (Y = F-I) is presented. First, we evaluated the structure determining template effect of Cl in a systematic series of concave silapolyquinane model systems. Second, we investigated the X$^- \to$ Si$_{20}$ interaction energy (Eint) as a function of X and Y and found the largest Eint values for electron-withdrawing exohedral substituents Y. Given that X ions can be considered as Lewis bases and empty Sii$_{20}$Yi$_{20}$ clusters as Lewis acids, we classify our inseparable host–guest complexes [X@Sii$_{20}$Yi$_{20}$] as “confined Lewis pairs”. Third, $^{35}$Cl NMR spectroscopy proved to be highly diagnostic for an experimental assessment of the Cl$^- \to$ Sii$_{20}$ interaction as the paramagnetic shielding and, in turn, delta($^{35}$Cl) of the endohedral Cl ion correlate inversely with Eint. Finally, we disclose the synthesis of [PPN][Cl@Sii$_{20}$Yi$_{20}$](Y = Me, Et, Br) and provide a thorough characterization of these new silafulleranes.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project 506550642 - Siladodecahedrane: Untersuchungen zu Reaktivität, Bindungssituation und optoelektronischen Eigenschaften (506550642)
|0 G:(GEPRIS)506550642
|c 506550642
|x 1
542 _ _ |i 2024-01-02
|2 Crossref
|u http://creativecommons.org/licenses/by-nc/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P24
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P24-20150101
|6 EXP:(DE-H253)P-P24-20150101
|x 0
700 1 _ |a Bamberg, Marcel
|0 P:(DE-H253)PIP1104544
|b 1
700 1 _ |a Wicke, Julius
|0 0009-0004-5735-136X
|b 2
700 1 _ |a Bolte, Michael
|0 0000-0001-5296-6251
|b 3
700 1 _ |a Virovets, Alexandr
|0 P:(DE-H253)PIP1026845
|b 4
700 1 _ |a Lerner, Hans-Wolfram
|0 0000-0003-1803-7947
|b 5
700 1 _ |a Grimme, Stefan
|0 0000-0002-5844-4371
|b 6
700 1 _ |a Hansen, Andreas
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Wagner, Matthias
|0 P:(DE-H253)PIP1102807
|b 8
|e Corresponding author
700 1 _ |a Bursch, Markus
|0 0000-0001-6711-5804
|b 9
|e Corresponding author
773 1 8 |a 10.1002/anie.202314238
|b Wiley
|d 2024-01-02
|n 6
|3 journal-article
|2 Crossref
|t Angewandte Chemie International Edition
|v 63
|y 2024
|x 1433-7851
773 _ _ |a 10.1002/anie.202314238
|g Vol. 63, no. 6, p. e202314238
|0 PERI:(DE-600)2011836-3
|n 6
|p e202314238
|t Angewandte Chemie / International edition
|v 63
|y 2024
|x 1433-7851
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/602305/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Gasevic%20-%20Confined%20Lewis%20Pairs%20Investigation%20of%20the%20X%20Si20%20Interaction%20in.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/602305/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Gasevic%20-%20Confined%20Lewis%20Pairs%20Investigation%20of%20the%20X%20Si20%20Interaction%20in.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:602305
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1104544
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1026845
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1102807
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts
999 C 5 |a 10.1039/C7DT90112G
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.199310541
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c39880001083
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1118981
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/318162a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.242.4881.1017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/347354a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35024037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c0nr00925c
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja00380a040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.74.1323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/33369
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.62.023201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.546
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/13/48/312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Unsaturated silicon clusters containing non-substituted cluster vertices are mainly known in the form of Zintl ions and siliconoids:
999 C 5 |a 10.1021/acs.chemrev.1c00052
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200462730
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D0SC01427C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201001630
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200904242
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0009-2614(96)00315-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.235417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.155403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.115429
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c2sc20448g
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u This formal charge assignment does not claim to reflect the actual charge distribution in the molecule.
999 C 5 |a 10.1021/ar00059a005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/10641229909351382
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.theochem.2008.12.029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.195417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physe.2012.06.023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.22938
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/27/27/275704
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp000090u
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.055502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cplett.2003.11.087
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.theochem.2005.04.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp067700w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2749514
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp8006975
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cjoc.201180357
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nn3058888
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cplett.2005.02.121
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.045416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.theochem.2006.05.053
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cplett.2005.05.110
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201412050
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.1c05598
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.101.214303
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jpcc.8b03360
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/5.0004608
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wcms.1493
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u TURBOMOLE V 7.3 2018 a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989–2007 TURBOMOLE GmbH since 2007; available fromhttp://www.turbomole.com.
999 C 5 |a 10.1063/5.0005081
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u H.-J. Werner P. J. Knowles P. Celani W. Györffy A. Hesselmann D. Kats G. Knizia A. Köhn T. Korona D. Kreplin R. Lindh Q. Ma F. R. Manby A. Mitrushenkov G. Rauhut M. Schütz K. R. Shamasundar T. B. Adler R. D. Amos S. J. Bennie A. Bernhardsson A. Berning J. A. Black P. J. Bygrave R. Cimiraglia D. L. Cooper D. Coughtrie M. J. O. Deegan A. J. Dobbyn K. Doll M. Dornbach F. Eckert S. Erfort E. Goll C. Hampel G. Hetzer J. G. Hill M. Hodges T. Hrenar G. Jansen C. Köppl C. Kollmar S. J. R. Lee Y. Liu A. W. Lloyd R. A. Mata A. J. May B. Mussard S. J. Mc-Nicholas W. Meyer T. F. Miller III M. E. Mura A. Nicklass D. P. O'Neill P. Palmieri D. Peng K. A. Peterson K. Pflüger R. Pitzer I. Polyak M. Reiher J. O. Richardson J. B. Robinson B. Schröder M. Schwilk T. Shiozaki M. Sibaev H. Stoll A. J. Stone R. Tarroni T. Thorsteinsson J. Toulouse M. Wang M. Welborn B. Ziegler MOLPRO 2022.3 a package of ab initio programs.
999 C 5 |a 10.1002/jcc.1056
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF00913599
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0032-3861(96)00323-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.201402655
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja002831a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/om1000716
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c0dt00925c
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic102535n
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3516179
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic301283m
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cphc.201400018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jpca.7b11052
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/zaac.201800145
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.201808291
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D2QO00011C
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4927476
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp810292n
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BFb0048476
|9 -- missing cx lookup --
|2 Crossref
|u For an overview of organic polyquinane chemistry see: L. A. Paquette The development of polyquinane chemistry inOrganic Chemistry Springer Berlin Heidelberg Berlin Heidelberg1979 pages 41–165.
999 C 5 |a 10.1021/jacs.7b00250
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.6b00523
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wcms.1442
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.8b01145
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4773581
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4821834
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4939030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4981521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5011798
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.0c01129
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/wcms.1371
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jctc.7b00799
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u To generate reliable reference interaction energies (Eint) we applied a high-level state-of-the-art local coupled cluster method including explicit correlation (PNO-LCCSD(T)-F12b employed with tight domain settings) with a modified aug-cc-pVQZ basis set (aug-cc-pVQZ-PP for the heavier elements cc-pVQZ for H; denoted AVQZ’ in the following). Since this setup is computationally too expensive for the larger structures (and those with many heavier elements) we applied a slightly less accurate but clearly faster reference protocol (PNO-LCCSD(T)-F12b/AVTZ’ with default domain settings) for the latter systems. The respective additional error could be significantly reduced by applying a scaling factor to the triples contributions (see Computational Details in Supporting Information). The in this way obtained interaction energies for the subset comprised of the smaller systems are virtually identical to the respective PNO-LCCSD(T)-F12b/AVQZ’/tight results with a mean unsigned error of only 0.05 kcal mol−1(see Supporting Information Table S1) so that comparably accurate reference values could also be generated for the larger subset. We conservatively estimate the residual error of the generated reference values to be 0.5–1.0 kcal mol−1forEint thus allowing for a statistical discriminability of about 0.1 kcal mol−1of the mean errors for the evaluated DFT methods.
999 C 5 |a 10.1021/acs.jctc.3c00270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1998907
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2647019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.456153
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/P29930000799
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.10189
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/j100007a062
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design in Klamt (Editor) COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design pages 1–234 Elsevier Amsterdam2005.
999 C 5 |a 10.1002/chem.201200497
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u We tested the following density functional approximations in combination the the ma-def2-QZVPP basis set: PBE-D4 TPSS-D4 PW6B95-D4 B3LYP-D4 PBE0-D4 r2SCAN0-D4 ωB97X-D4 ωB97X-V ωB97M-D4 ωB97M-V ωB97X-2-D4 B2PLYP-D4 and PWPB95-D4. Further the composite r2SCAN-3c DFT method was tested with the def2-mTZVPP basis set.
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4993215
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5090222
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.146401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp050536c
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.37.785
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.464913
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/j100096a001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.478522
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/5.0086040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.26411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c3cp54374a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4952647
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3244209
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2148954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ct100466k
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00214-010-0846-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/5.0040021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3484283
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b508541a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3159673
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00894-006-0149-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jp075460u
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF02401406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ct800503d
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D3CP02371K
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.476630
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/j100002a024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0079-6565(97)00013-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0031-8949/34/5/007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.466059
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.467943
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.10255
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/V09-008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.202114550
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u For Y=F we find no such correlation betweenEintandδ(35Cl). However in this case ▵δ(35Cl) is rather small between the different cluster sizes and the same is true for the absoluteδ(35Cl) values so that any systematic trends can easily be obscured by inaccuracies inherent to the theoretical method.
999 C 5 |a 10.1002/cmr.a.10096
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja00059a040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2905235
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00268977400100711
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja00179a005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.3c03270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u As reported previously [134]our synthesis leads to a product with the composition Me2.2AlH0.8. For simplicity we refer to the idealized formula Me2AlH in the main text but we use the exact stoichiometry in the Supporting Information.
999 C 5 |2 Crossref
|u CIF files containing the crystallographic information were deposited in the Cambridge Crystallographic Data Centre under the deposition codes CCDC 2294476 ([PPN][Cl@Si20Me20]×THF) CCDC 2294477 ([PPN][Cl@Si20Et20]) and CCDC 2294478 ([nBu4N]2[Si6I10.85Cl1.15 ⋅2I]; cf. the Supporting Information for details) and can be obtained free of charge viawww.ccdc.cam.ac.uk/data_request/cif.
999 C 5 |2 Crossref
|u The actual conversion to [PPN][Cl@Si20Br20] is about 90 %; the purification step served to remove traces of unknown impurities.
999 C 5 |a 10.1107/S0108768197018454
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/D3CC02142D
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21