Home > Publications database > The DESY digital silicon photomultiplier: Device characteristics and first test-beam results > print |
001 | 602205 | ||
005 | 20250718113729.0 | ||
024 | 7 | _ | |a 10.1016/j.nima.2024.169321 |2 doi |
024 | 7 | _ | |a 0167-5087 |2 ISSN |
024 | 7 | _ | |a 0168-9002 |2 ISSN |
024 | 7 | _ | |a 1872-9576 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2024-00531 |2 datacite_doi |
024 | 7 | _ | |a WOS:001300021300001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4393970630 |
037 | _ | _ | |a PUBDB-2024-00531 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Diehl, Inge |0 P:(DE-H253)PIP1000066 |b 0 |
111 | 2 | _ | |a 13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors |g HSTD13 |c Vancouver |d 2023-12-03 - 2023-12-08 |w Canada |
245 | _ | _ | |a The DESY digital silicon photomultiplier: Device characteristics and first test-beam results |
260 | _ | _ | |a Amsterdam |c 2024 |b North-Holland Publ. Co. |
300 | _ | _ | |a 4 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1715601035_1038377 |2 PUB:(DE-HGF) |
500 | _ | _ | |a CC BY 4.0 Deed, Received 13 February 2024, Revised 27 March 2024, Accepted 3 April 2024, Available online 5 April 2024, Version of Record 13 April 2024. |
520 | _ | _ | |a Silicon Photomultipliers (SiPMs) are state-of-the-art photon detectors used in particle physics, medical imaging, and beyond. They are sensitive to individual photons in the optical wavelength regime and achieve time resolutions of a few tens of picoseconds, which makes them interesting candidates for timing detectors in tracking systems for particle physics experiments. The Geiger discharges triggered in the sensitive elements of a SiPM, Single-Photon Avalanche Diodes (SPADs), yield signal amplitudes independent of the energy deposited by a photon or ionizing particle. This intrinsically digital nature of the signal motivates its digitization already on SPAD level. A digital SiPM (dSiPM) was designed at Deutsches Elektronen Synchrotron (DESY), combining a SPAD array with embedded CMOS circuitry for on-chip signal processing. A key feature of the DESY dSiPM is its capability to provide hit-position information on pixel level, and one hit time stamp per quadrant at a 3 MHz readout-frame rate. The pixels comprise four SPADs and have a pitch of about 70 μm. The four time stamps are provided by 12 bit Time-to-Digital Converters (TDCs) with a resolution better than 100 ps. The chip was characterized in the laboratory to determine dark count rate, breakdown voltage, and TDC characteristics. Test-beam measurements are analyzed to assess the DESY dSiPMs performance in the context of a 4D-tracking applications. The results demonstrate a spatial hit resolution on a pixel level, a minimum-ionizing particle detection efficiency of about 30 % and a time resolution in the order of 50 ps. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2024-07-01 |2 Crossref |u https://www.elsevier.com/legal/tdmrep-license |
542 | _ | _ | |i 2024-04-11 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Feindt, Finn |0 P:(DE-H253)PIP1019720 |b 1 |e Corresponding author |
700 | 1 | _ | |a Hansen, Karsten |0 P:(DE-H253)PIP1003149 |b 2 |
700 | 1 | _ | |a Lachnit, Stephan |0 P:(DE-H253)PIP1098944 |b 3 |
700 | 1 | _ | |a Poblotzki, Frauke |0 P:(DE-H253)PIP1032279 |b 4 |
700 | 1 | _ | |a Rastorguev, Daniil |0 P:(DE-H253)PIP1099910 |b 5 |
700 | 1 | _ | |a Spannagel, Simon |0 P:(DE-H253)PIP1018940 |b 6 |
700 | 1 | _ | |a Vanat, Tomas |0 P:(DE-H253)PIP1087423 |b 7 |
700 | 1 | _ | |a Vignola, Gianpiero |0 P:(DE-H253)PIP1099070 |b 8 |
773 | 1 | 8 | |a 10.1016/j.nima.2024.169321 |b Elsevier BV |d 2024-07-01 |p 169321 |3 journal-article |2 Crossref |t Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |v 1064 |y 2024 |x 0168-9002 |
773 | _ | _ | |a 10.1016/j.nima.2024.169321 |g Vol. 1064, p. 169321 - |0 PERI:(DE-600)1466532-3 |p 169321 |t Nuclear instruments & methods in physics research / Section A |v 1064 |y 2024 |x 0168-9002 |
856 | 4 | _ | |u https://doi.org/10.1016/j.nima.2024.169321 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/Requests.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/Requests.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/ProceedingHiroshima2023_dSiPM_FinnFeindt_v2.pdf |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/publishers_version.pdf |y Restricted |z StatID:(DE-HGF)0599 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/ProceedingHiroshima2023_dSiPM_FinnFeindt_v2.pdf?subformat=pdfa |x pdfa |y OpenAccess |z StatID:(DE-HGF)0510 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/602205/files/publishers_version.pdf?subformat=pdfa |x pdfa |y Restricted |z StatID:(DE-HGF)0599 |
909 | C | O | |o oai:bib-pubdb1.desy.de:602205 |p openaire |p open_access |p OpenAPC |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1000066 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1019720 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1003149 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1098944 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1032279 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1099910 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1018940 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1087423 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1087423 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1099070 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2022 |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |2 APC |0 PC:(DE-HGF)0125 |
920 | 1 | _ | |0 I:(DE-H253)ATLAS-20120731 |k ATLAS |l LHC/ATLAS Experiment |x 0 |
920 | 1 | _ | |0 I:(DE-H253)CMS-20120731 |k CMS |l LHC/CMS Experiment |x 1 |
920 | 1 | _ | |0 I:(DE-H253)FE-20120731 |k FE |l Koordination Elektronik Entwicklung |x 2 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-H253)ATLAS-20120731 |
980 | _ | _ | |a I:(DE-H253)CMS-20120731 |
980 | _ | _ | |a I:(DE-H253)FE-20120731 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1016/j.nima.2018.11.083 |9 -- missing cx lookup -- |1 Klanner |p 36 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 926 |y 2019 |
999 | C | 5 | |a 10.1016/j.nima.2018.11.118 |9 -- missing cx lookup -- |1 Acerbi |p 16 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 926 |y 2019 |
999 | C | 5 | |1 Kolanoski |y 2020 |2 Crossref |o Kolanoski 2020 |
999 | C | 5 | |1 Frach |y 2009 |2 Crossref |o Frach 2009 |
999 | C | 5 | |a 10.1016/j.nima.2022.167033 |1 Fischer |9 -- missing cx lookup -- |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 1040 |y 2022 |
999 | C | 5 | |a 10.1016/j.nima.2022.167228 |1 Cartiglia |9 -- missing cx lookup -- |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 1040 |y 2022 |
999 | C | 5 | |a 10.1088/1748-0221/19/01/P01020 |9 -- missing cx lookup -- |1 Diehl |p P01020 - |2 Crossref |t J. Instrum. |v 19 |y 2024 |
999 | C | 5 | |1 Vanat |y 2020 |2 Crossref |o Vanat 2020 |
999 | C | 5 | |y 2024 |2 Crossref |o 2024 |
999 | C | 5 | |a 10.1016/j.nima.2018.11.133 |9 -- missing cx lookup -- |1 Diener |p 265 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 922 |y 2019 |
999 | C | 5 | |1 Jansen |y 2006 |2 Crossref |o Jansen 2006 |
999 | C | 5 | |a 10.1016/j.nima.2010.03.043 |9 -- missing cx lookup -- |1 Hu-Guo |p 480 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 623 |y 2010 |
999 | C | 5 | |a 10.1088/1748-0221/14/09/P09019 |9 -- missing cx lookup -- |1 Baesso |p P09019 - |2 Crossref |t J. Instrum. |v 14 |y 2019 |
999 | C | 5 | |a 10.1088/1748-0221/16/03/P03008 |9 -- missing cx lookup -- |1 Dannheim |p P03008 - |2 Crossref |t J. Instrum. |v 16 |y 2021 |
999 | C | 5 | |y 2024 |2 Crossref |o 2024 |
999 | C | 5 | |a 10.1016/j.cpc.2011.03.017 |9 -- missing cx lookup -- |1 Blobel |p 1760 - |2 Crossref |t Comput. Phys. Comm. |v 182 |y 2011 |
999 | C | 5 | |a 10.1016/j.nima.2012.01.024 |9 -- missing cx lookup -- |1 Kleinwort |p 107 - |2 Crossref |t Nucl. Instrum. Methods Phys. Res. A |v 673 |y 2012 |
999 | C | 5 | |1 Lachnit |y 2024 |2 Crossref |o Lachnit 2024 |
999 | C | 5 | |a 10.1088/1748-0221/17/06/P06007 |9 -- missing cx lookup -- |1 Carnesecchi |p P06007 - |2 Crossref |t J. Instrum. |v 17 |y 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|